Advertisement

Domain Wall Spin Structures in 3d Metal Ferromagnetic Nanostructures

  • M. Laufenberg
  • M. Kläui
  • D. Backes
  • W. Bührer
  • H. Ehrke
  • D. Bedau
  • U. Rüdiger
  • F. Nolting
  • L. J. Heyderman
  • S. Cherifi
  • A. Locatelli
  • R. Belkhou
  • S. Heun
  • C. A. F. Vaz
  • J. A. C. Bland
  • T. Kasama
  • R. E. Dunin-Borkowski
  • A. Pavlovska
  • E. Bauer
Part of the Advances in Solid State Physics book series (ASSP, volume 46)

Abstract

In this article, a comprehensive study of head-to-head domain wall spin structures in Ni80Fe20 and Co nanostructures is presented. Quantitative domain wall type phase diagrams for NiFe and Co are obtained and compared with available theoretical predictions and micromagnetic simulations. Differences to the experiment are explained taking into account thermal excitations. Thermally induced domain wall type transformations are observed from which a vortex core nucleation barrier height is obtained. The stray field of a domain wall is mapped directly with sub-10nm resolution using off-axis electron holography, and the field intensity is found to decrease as 1/r with distance. The magnetic dipolar coupling of domain walls in NiFe and Co elements is studied using X-ray magnetic circular dicroism photoemission electron microscopy. We observe that the spin structures of interacting domain walls change from vortex to transverse walls, when the distance between the walls is reduced. Using the measured stray field values, the energy barrier height distribution for the nucleation of a vortex core is obtained.

Keywords

Domain Wall Spin Structure Wall Type Transverse Wall Adjacent Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. A. Allwood et al., Science 309, 1688 (2005)CrossRefADSGoogle Scholar
  2. [2]
    G. A. Prinz, J. Magn. Magn. Mater. 200, 57 (1999)CrossRefADSGoogle Scholar
  3. [3]
    S. S. P. Parkin: U.S. patent 6,834,005 and patent application 10/984,055 (2004)Google Scholar
  4. [4]
    P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997)CrossRefADSGoogle Scholar
  5. [5]
    U. Ebels et al., Phys. Rev. Lett. 84, 983 (2000)CrossRefADSGoogle Scholar
  6. [6]
    M. Kläui et al., Phys. Rev. Lett. 90, 097202 (2003)CrossRefADSGoogle Scholar
  7. [7]
    D. Atkinson et al., Nature Mat. 2, 85 (2003)CrossRefADSGoogle Scholar
  8. [8]
    Y. Nakatani, A. Thiaville, and J. Miltat, Nature Mat. 2, 521 (2003)CrossRefADSGoogle Scholar
  9. [9]
    R. Wieser, U. Nowak, and K. D. Usadel, Phys. Rev. B 69, 064401 (2004)CrossRefADSGoogle Scholar
  10. [10]
    M. Kläui et al., Appl. Phys. Lett. 87, 102509 (2005)CrossRefADSGoogle Scholar
  11. [11]
    U. Rüdiger et al., Phys. Rev. Lett. 80, 5639 (1998)CrossRefADSGoogle Scholar
  12. [12]
    A. D. Kent et al., J. Phys.: Cond. Mat. 13, R461 (2001)CrossRefADSGoogle Scholar
  13. [13]
    A. Yamaguchi et al., Phys. Rev. Lett. 92, 077205 (2004)CrossRefADSGoogle Scholar
  14. [14]
    M. Kläui et al., Phys. Rev. Lett. 94, 106601 (2005)CrossRefADSGoogle Scholar
  15. [15]
    M. Kläui et al., Phys. Rev. Lett. 95, 026601 (2005)CrossRefADSGoogle Scholar
  16. [16]
    D. Atkinson and R. P. Cowburn, Appl. Phys. Lett. 85, 1386 (2004)CrossRefADSGoogle Scholar
  17. [17]
    D. Lacour et al., Appl. Phys. Lett. 85, 4681 (2004)CrossRefADSGoogle Scholar
  18. [18]
    A. Yamaguchi et al., Appl. Phys. Lett. 86, 012511 (2005)CrossRefADSGoogle Scholar
  19. [19]
    N. Kazantseva, R. Wieser, and U. Nowak, Phys. Rev. Lett. 94, 037206 (2005)CrossRefADSGoogle Scholar
  20. [20]
    J. Rothman et al., Phys. Rev. Lett. 86, 1098 (2001)CrossRefADSGoogle Scholar
  21. [21]
    R. D. McMichael and M. J. Donahue, IEEE Trans. Magn. 33, 4167 (1997)CrossRefADSGoogle Scholar
  22. [22]
    X. Zhu et al., J. Appl. Phys. 93, 8540 (2003)CrossRefADSGoogle Scholar
  23. [23]
    M. Kläui et al., Appl. Phys. Lett. 86, 032504 (2005)CrossRefADSGoogle Scholar
  24. [24]
    L. J. Heyderman et al., J. Appl. Phys. 93, 10011 (2003)CrossRefADSGoogle Scholar
  25. [25]
    Y. G. Yoo et al., Appl. Phys. Lett. 82, 2470 (2003)CrossRefADSGoogle Scholar
  26. [26]
    J. Stöhr et al., Science 259, 658 (1993)ADSGoogle Scholar
  27. [27]
    L. J. Heyderman et al., J. Magn. Magn. Mater. 290–291, 86 (2005)CrossRefGoogle Scholar
  28. [28]
    A. Tonomura, Adv. Phys. 41, 59 (1992)CrossRefADSGoogle Scholar
  29. [29]
    R. E. Dunin-Borkowski et al., J. Microsc. 200, 187 (2000)CrossRefGoogle Scholar
  30. [30]
    M. Laufenberg et al., Appl. Phys. Lett. 88, 052507 (2006)CrossRefADSGoogle Scholar
  31. [31]
    M. Kläui et al., Appl. Phys. Lett. 85, 5637 (2004)CrossRefADSGoogle Scholar
  32. [32]
    M. Kläui et al., Physica B 343, 343 (2004)CrossRefADSGoogle Scholar
  33. [33]
    The OOMMF package is available at http://math.nist.gov/oommf.Google Scholar
  34. [34]
    C. A. F. Vaz et al., Phys. Rev. B 72, 224426 (2005)CrossRefADSGoogle Scholar
  35. [35]
    C. A. F. Vaz et al., Nucl. Instrum. Meth. Phys. Res. B 246, 13 (2006)CrossRefADSGoogle Scholar
  36. [36]
    M. Kläui et al., J. Appl. Phys. (in press) 99 (2006)Google Scholar
  37. [37]
    I. Hashim, H. S. Joo, and H. A. Atwater, Surf. Rev. Lett. 2, 427 (1994)CrossRefGoogle Scholar
  38. [38]
    A. Hubert and R. Schäfer: Magnetic Domains-The Analysis of Magnetic Microstructures (Springer, Berlin Heidelberg New York 1998)Google Scholar
  39. [39]
    M. H. Park et al., Phys. Rev. B 73, 094424 (2006)CrossRefADSGoogle Scholar
  40. [40]
    M. Kläui, et al., submittedGoogle Scholar
  41. [41]
    Y. Nakatani et al., J. Magn. Magn. Mater. 290–291, 750 (2005)CrossRefGoogle Scholar
  42. [42]
    M. Laufenberg et al., submittedGoogle Scholar
  43. [43]
    R. P. Cowburn et al., Phys. Rev. Lett. 83, 1042 (1999)CrossRefADSGoogle Scholar
  44. [44]
    M. McCaig: Permanent Magnets in Theory and Practice, 1st ed. (Pentech, London 1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Laufenberg
    • 1
  • M. Kläui
    • 1
  • D. Backes
    • 1
    • 2
  • W. Bührer
    • 1
  • H. Ehrke
    • 1
    • 5
  • D. Bedau
    • 1
  • U. Rüdiger
    • 1
  • F. Nolting
    • 2
  • L. J. Heyderman
    • 2
  • S. Cherifi
    • 3
  • A. Locatelli
    • 3
  • R. Belkhou
    • 3
  • S. Heun
    • 3
  • C. A. F. Vaz
    • 4
  • J. A. C. Bland
    • 4
  • T. Kasama
    • 5
  • R. E. Dunin-Borkowski
    • 5
  • A. Pavlovska
    • 6
  • E. Bauer
    • 6
  1. 1.Fachbereich PhysikUniversität KonstanzKonstanzGermany
  2. 2.Paul Scherrer InstitutVilligen PSISwitzerland
  3. 3.Nanospectroscopy BeamlineSincrotrone TriesteBasovizza / TriesteItaly
  4. 4.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  5. 5.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  6. 6.Department of Physics and AstronomyArizona State UniversityTempeUSA

Personalised recommendations