Decoherence of Fermions Subject to a Quantum Bath

  • Florian Marquardt
Part of the Advances in Solid State Physics book series (ASSP, volume 46)


The destruction of quantum-mechanical phase coherence by a fluctuating quantum bath has been investigated mostly for a single particle. However, for electronic transport through disordered samples and mesoscopic interference setups, we have to treat a many-fermion system subject to a quantum bath. Here, we review a novel technique for treating this situation in the case of ballistic interferometers, and discuss its application to the electronic Mach-Zehnder setup. We use the results to bring out the main features of decoherence in a many-fermion system and briefly discuss the same ideas in the context of weak localization.


Shot Noise Weak Localization Zehnder Interferometer Pauli Blocking Classical Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Joos et al.: Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Heidelberg, 2003)Google Scholar
  2. [2]
    W. H. Zurek: Decoherence and the transition from quantum to classical, Phys. Today 44, 36 (1991)CrossRefGoogle Scholar
  3. [3]
    K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996)Google Scholar
  4. [4]
    U. Weiss: Quantum Dissipative Systems (World Scientific, Singapore, 2000)Google Scholar
  5. [5]
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger: Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1–85 (1987)CrossRefADSGoogle Scholar
  6. [6]
    C. H. Bennett, D. P. DiVincenzo: Quantum information and computation, Nature 404, 247–255 (2000)CrossRefADSGoogle Scholar
  7. [7]
    C. W. J. Beenakker, H. van Houten: Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1–228 (1991)CrossRefGoogle Scholar
  8. [8]
    A. Stern, Y. Aharonov, Y. Imry: Phase uncertainty and loss of interference: A general picture, Phys. Rev. A 41, 3436–3448 (1990)CrossRefADSGoogle Scholar
  9. [9]
    D. Loss, K. Mullen: Dephasing by a dynamic asymmetric environment, Phys. Rev. B 43, 13252 (1991)CrossRefADSGoogle Scholar
  10. [10]
    Y. Imry: Introduction to Mesoscopic Physics, 2nd ed. (Oxford University Press, 2002)Google Scholar
  11. [11]
    R. P. Feynman, F. L. Vernon: The theory of a general quantum mechanical system interacting with a linear dissipative system, Ann. Phys. (NY) 24, 118–173 (1963)CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    A. H. C. Neto, C. D. Chamon, C. Nayak: Open Luttinger liquids, Phys. Rev. Lett. 79, 4629 (1997)CrossRefADSGoogle Scholar
  13. [13]
    P. Cedraschi, V. V. Ponomarenko, M. Büttiker: Zero-point fluctuations and the quenching of the persistent current in normal metal rings, Phys. Rev. Lett. 84, 346–349 (2000)CrossRefADSGoogle Scholar
  14. [14]
    F. Marquardt, C. Bruder: Aharonov-Bohm ring with fluctuating flux, Phys. Rev. B 65, 125315 (2002)CrossRefADSGoogle Scholar
  15. [15]
    F. Marquardt, C. Bruder: Dephasing in sequential tunneling through a double-dot interferometer, Phys. Rev. B 68, 195305 (2003)CrossRefADSGoogle Scholar
  16. [16]
    F. Marquardt, D. S. Golubev: Relaxation and dephasing in a many-fermion generalization of the caldeira-leggett model, Phys. Rev. Lett. 93, 130404 (2004)CrossRefADSGoogle Scholar
  17. [17]
    F. Marquardt, D. S. Golubev: Many-fermion generalization of the Caldeira-Leggett model, Phys. Rev. A 72, 022113 (2005)CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    F. Marquardt: Fermionic Mach-Zehnder interferometer subject to a quantum bath, Europhys. Lett. 72, 788 (2005)CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman: An electronic Mach-Zehnder interferometer, Nature 422, 415 (2003)CrossRefADSGoogle Scholar
  20. [20]
    I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky: Unexpected behavior in a two-path electron interferometer, Phys. Rev. Lett. 96, 016804 (2006)CrossRefADSGoogle Scholar
  21. [21]
    G. Seelig, M. Büttiker: Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer, Phys. Rev. B 64, 245313 (2001)CrossRefADSGoogle Scholar
  22. [22]
    F. Marquardt, C. Bruder: Influence of dephasing on shot noise in an electronic Mach-Zehnder interferometer, Phys. Rev. Lett. 92, 056805 (2004)CrossRefADSGoogle Scholar
  23. [23]
    F. Marquardt, C. Bruder: Effects of dephasing on shot noise in an electronic Mach-Zehnder interferometer, Phys. Rev. B 70, 125305 (2004)CrossRefADSGoogle Scholar
  24. [24]
    H. Förster, S. Pilgram, M. Büttiker: Decoherence and full counting statistics in a Mach-Zehnder interferometer, Phys. Rev. B 72, 075301 (2005)CrossRefADSGoogle Scholar
  25. [25]
    S. Pilgram, P. Samuelsson, H. Förster, M. Büttiker: Full counting statistics for voltage and dephasing probes, cond-mat/0512276Google Scholar
  26. [26]
    F. Marquardt: Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath, cond-mat/0604458 (2006)Google Scholar
  27. [27]
    A. O. Caldeira, A. J. Leggett: Path integral approach to quantum Brownian motion, Physica 121A, 587 (1983)ADSMathSciNetGoogle Scholar
  28. [28]
    Ya. M. Blanter, M. Büttiker: Shot noise in mesoscopic conductors, Phys. Rep. 336, 1 (2000)CrossRefADSGoogle Scholar
  29. [29]
    B. L. Altshuler, A. G. Aronov, D. E. Khmelnitsky: Effects of electron-electron collisions with small energy transfers on quantum localization, J. Phys. C Solid State 15, 7367 (1982)CrossRefADSGoogle Scholar
  30. [30]
    S. Chakravarty, A. Schmid: Weak localization: The quasiclassical theory of electrons in a random potential, Phys. Rep. 140, 195 (1986)CrossRefADSGoogle Scholar
  31. [31]
    H. Fukuyama, E. Abrahams: Inelastic scattering time in two-dimensional disordered metals, Phys. Rev. B 27, 5976 (1983)CrossRefADSGoogle Scholar
  32. [32]
    I. Aleiner, B. L. Altshuler, M. E. Gershenzon: Interaction effects and phase relaxation in disordered systems, Waves in Random Media 9, 201 (1999) [condmat/9808053]zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. [33]
    F. Marquardt, J. v. Delft, R. Smith, V. Ambegaokar: Decoherence in weak localization I: Pauli principle in influence functional, cond-mat/0510556Google Scholar
  34. [34]
    J. v. Delft, F. Marquardt, R. Smith, V. Ambegaokar: Decoherence in weak localization II: Bethe-Salpeter calculation of Cooperon, cond-mat/0510557; J. v. Delft: Influence functional for decoherence of interacting electrons in disordered conductors, cond-mat/0510563Google Scholar
  35. [35]
    D. S. Golubev, A. D. Zaikin: Quantum decoherence and weak localization at low temperatures, Phys. Rev. B 59, 9195 (1999)CrossRefADSGoogle Scholar
  36. [36]
    In contrast, the decoherence rate given in Ref. [35] is equal to that obtained for a single particle, with f = 0 in our formula, thus saturating at T = 0. We should note that the authors of Ref. [35] disagree with our conclusions, see their comment: D. S. Golubev and A. D. Zaikin, cond-mat/0512411.Google Scholar
  37. [37]
    W. Eiler: Electron-electron interaction and weak localization, J. Low Temp. Phys. 56, 481 (1984)CrossRefADSGoogle Scholar
  38. [38]
    D. Cohen, Y. Imry: Dephasing at low temperatures, Phys. Rev. B 59, 11143 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Florian Marquardt
    • 1
  1. 1.Sektion Physik, Center for NanoScience, and Arnold-Sommerfeld-Center for Theoretical PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations