Effects of Electrical and Electromagnetic Fields on Plants and Related Topics

  • Andrew Goldsworthy


Electromagnetic Field Polar Growth Tropic Curvature Weak Electromagnetic Field Electromagnetic Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey WR (1990) Electromagnetic fields, cell membrane amplification, and cancer promotion. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 211–249.Google Scholar
  2. Alberts B, Bray D, Lewis J et al. (2002) Molecular biology of the cell. Garland Science, New York.Google Scholar
  3. Barbier E, Veyret B, Dufy B (1996) Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics 17:303–311.CrossRefPubMedGoogle Scholar
  4. Baureus Koch CLM, Sommarin M, Persson BRR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402.CrossRefPubMedGoogle Scholar
  5. Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci USA 73:1999–2003.CrossRefPubMedGoogle Scholar
  6. Bawin SM, Kaczmarek KL, Adey WR (1975) Effects of modulated VHF fields on the central nervous system. Ann N Y Acad Sci 247:74–81.CrossRefPubMedGoogle Scholar
  7. Blackman CF (1990) ELF effects on calcium homeostasis. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 189–208.Google Scholar
  8. Blackman CF, Benane SG, Kinney LS, House DE, Joines WT (1982) Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat Res 92:510–520.CrossRefPubMedGoogle Scholar
  9. Blackman VH (1924) Field experiments in electroculture. J Agricult Sci 14:240–267.CrossRefGoogle Scholar
  10. Blackman VH, Legg AT (1924) Pot culture experiments with an electric discharge. J Agricult Sci 14:268–273.CrossRefGoogle Scholar
  11. Blackman VH, Legg AT, Gregory FG (1923) The effect of direct current of very low intensity on the rate of growth of the coleoptile of barley. Proc R Soc Lond B 95:214–228.CrossRefGoogle Scholar
  12. Briggs LJ, Campbell AB, Heald RH, Flint LH (1926) Electroculture. US Dept Agriculture, Bulletin 1379.Google Scholar
  13. Dijak M, Smith DL, Wilson TJ, Brown DCW (1986) Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep 5:468–470.CrossRefGoogle Scholar
  14. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hanann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 246:147–153.CrossRefGoogle Scholar
  15. Goldsworthy A (1996) Electrostimulation of cells by weak electric currents. In: Lynch PT, Davey NR (eds) Electrical manipulation of cells. Chapman and Hall, New York, pp 249–272.Google Scholar
  16. Goldsworthy A, Mina MG (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2, 4-dichlorophenoxyacetic acid. Planta 183:368–373.CrossRefGoogle Scholar
  17. Goodman R, Blank M, Lin H, Dai R, Khorkova O, Soo L, Weisbrot D, Henderson A (1994) Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem Bioenerg 33:115–120.CrossRefGoogle Scholar
  18. Ha B-Y (2001) Stabilization and destabilization of cell membranes by multivalent ions. Phys Rev E 64:051902 (5 pages).Google Scholar
  19. Halle B (1988) On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bioelectromagnetics 9:381–385.CrossRefPubMedGoogle Scholar
  20. Ihrig I, Heese C, Glaser R (1997) Alterations in intracellular calcium concentration in mice neuroblastoma cells by electrical field and UVA. Bioelectromagnetics 18:595–597.CrossRefPubMedGoogle Scholar
  21. Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476.CrossRefPubMedGoogle Scholar
  22. Jaffe LF, Robinson KR, Nuccitelli R (1974) Local cation entry and self-electrophoresis as an intracellular localisation mechanism. Ann N Y Acad Sci 238:372–389.CrossRefPubMedGoogle Scholar
  23. Lemström K (1904) Electricity in agriculture and horticulture. Electrician Publications, London.Google Scholar
  24. Lew VL, Hockaday A, Freeman CJ, Bookchin RM (1988) Mechanism of spontaneous inside-out vesiculation of red cell membranes. J Cell Biol 106:1893–1901.CrossRefPubMedGoogle Scholar
  25. Liburdy RP, Callahan DE, Harland J, Dunham E, Sloma TR, Yaswen P (1993) Experimental evidence for 60 Hz magnetic fields operation through the signal transduction cascade. FEBS 334:301–308.CrossRefGoogle Scholar
  26. Liboff AR (1985) Geomagnetic cyclotron resonance in living cells. J Biol Phys 13:39–51.CrossRefGoogle Scholar
  27. Liboff AR, McLeod BR, Smith SD (1990) Ion cyclotron resonance effects of ELF fields in biological systems. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 251–289.Google Scholar
  28. Lund EJ (1923) Electrical control of organic polarity in the egg of Fucus. Bot Gaz 76:288–301.CrossRefGoogle Scholar
  29. Magone I (1996) The effect of electromagnetic radiation from the Skrunda Radio Location Station on Spirodela polyrhiza (L) Schleiden cultures. Sci Total Environ 180:75–80.CrossRefGoogle Scholar
  30. McLeod BR, Smith SD, Liboff AR (1987) Potassium and calcium cyclotron resonance curves and harmonics in diatoms (A. coffeaeformis). J Bioelectr 6:153–168.Google Scholar
  31. Mehedintu M, Berg H (1997) Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem Bioenerg 43:67–70.CrossRefGoogle Scholar
  32. Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV (2001) Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys J 80:1829–1836.CrossRefPubMedGoogle Scholar
  33. Mina MG, Goldsworthy A (1991) Changes in the electrical polarity of tobacco cells following the application of weak external currents. Planta 186:104–108.CrossRefGoogle Scholar
  34. Mina MG, Goldsworthy A (1992) Electrical polarization of tobacco cells by Ca2+ ion channels. J Exp Bot 43:449–454.CrossRefGoogle Scholar
  35. Muday GK, Peer WA, Murphy AS (2003) Vesicular cycling mechanisms that control auxin transport polarity. Trends Plant Sci 8:301–304.CrossRefPubMedGoogle Scholar
  36. Mulkey TI, Kuzmanoff KM, Evans MI (1981) Correlations between proton efflux and growth patterns during geotropism and phototropism in maize and sunflower. Planta 152:239–241.CrossRefGoogle Scholar
  37. Muraji M, Asai T, Wataru T (1998) Primary root growth rate of Zea mays seedlings grown in an alternating magnetic field of different frequencies. Bioelectrochem Bioenerg 44:271–273.CrossRefGoogle Scholar
  38. Murr LE (1963) Plant growth responses in a stimulated electric field environment. Nature 200:490–491.CrossRefGoogle Scholar
  39. Mycielska ME, Djamgoz MBA (2004) Cellular mechanisms of direct-current electric fields effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639.CrossRefPubMedGoogle Scholar
  40. Novák B, Bentrup FW (1973) Orientation of Fucus egg polarity by electric ac and dc fields. Biophysik 9:253–260.CrossRefPubMedGoogle Scholar
  41. Obo M, Konishi S, Otaka Y, Kitamura S (2002) Effect of magnetic field exposure on calcium channel currents using patch clamp technique. Bioelectromagnetics 23:306–314.CrossRefPubMedGoogle Scholar
  42. Peng HB, Jaffe LF (1976) Polarization of fucoid eggs by steady electrical fields. Dev Biol 53:277–284.CrossRefPubMedGoogle Scholar
  43. Rathore KS, Goldsworthy A (1985) Electrical control of shoot regeneration in plant tissue cultures. Bio/Technol 3:1107–1109.CrossRefGoogle Scholar
  44. Rathore KS, Hodges TK, Robinson KR (1988) A refined technique to apply electrical currents to callus cultures. Plant Physiol 88:515–517.CrossRefPubMedGoogle Scholar
  45. Schonland BFJ (1928) The interchange of electricity between thunderclouds and the earth. Proc R Soc Lond A 118:242–262.Google Scholar
  46. Selaga T, Selaga M (1996) Response of Pinus sylvestris L needles to electromagnetic fields. Cytological and ultrastructural aspects. Sci Total Environ 180:65–73.CrossRefGoogle Scholar
  47. Smith SD. McLeod BR, Liboff AR (1993) Effects of SR tuning 60 Hz magnetic fields on sprouting and early growth of Raphanus sativus. Bioelectrochem Bioenerg 32:67–76.CrossRefGoogle Scholar
  48. Steck TL, Weinstein RS, Straus, JH, Wallach DFH (1970) Inside-out red cell membrane vesicles: preparation and purification. Science 168:255–257.CrossRefPubMedGoogle Scholar
  49. Stenz H-G, Wohlwend B, Weisenseel MH (1998) Weak AC electric fields promote root growth and ER abundance of root cap cells. Bioelectrochem Bioenerg 44:261–269.CrossRefGoogle Scholar
  50. Taiz L, Zeiger E (2002) Plant Physiology. Sinauer, Sunderland, Mass.Google Scholar
  51. Tenforde TS (1990) Biological interactions and human health effects of extremely low frequency magnetic fields. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 291–315.Google Scholar
  52. Wilson BW, Stevens RG, Anderson LE (eds) (1990) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio.Google Scholar
  53. Zhadin MN, Novikov VV, Barnes FS, Pergola NF (1998) Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19:41–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrew Goldsworthy

There are no affiliations available

Personalised recommendations