Prevention and Early Detection of Ovarian Cancer: Mission Impossible?

  • Robert C. BastJr.
  • Molly Brewer
  • Changping Zou
  • Mary A. Hernandez
  • Mary Daley
  • Robert Ozols
  • Karen Lu
  • Zhen Lu
  • Donna Badgwell
  • Gordon B. Mills
  • Steven Skates
  • Zhen Zhang
  • Dan Chan
  • Anna Lokshin
  • Yinhua Yu
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 174)

Abstract

Epithelial ovarian cancer is neither a common nor a rare disease. In the United States, the prevalence of ovarian cancer in postmenopausal women (1 in 2,500) significantly affects strategies for prevention and detection. If chemoprevention for ovarian cancer were provided to all women over the age of 50, side effects would have to be minimal in order to achieve an acceptable ratio of benefit to risk. This ratio might be improved by identifying subsets of individuals at increased risk or by bundling prevention of ovarian cancer with treatment for other more prevalent conditions. Approximately 10% of ovarian cancers are familial and relate to mutations of BRCA1, BRCA2, and mismatch repair genes. More subtle genetic factors are being sought in women with apparently sporadic disease. Use of oral contraceptive agents for as long as 5 years decreases the risk of ovarian cancer in later life by 50%. In one study, fenretinide (4- HPR) delayed development of ovarian cancer in women at increased risk of developing breast and ovarian cancer. Accrual to confirmatory studies has been prohibitively slow and prophylactic oophorectomy is recommended for women at increased genetic risk. Vaccines may have a role for prevention of several different cancers. Breast and ovarian cancers express mucins that could serve as targets for vaccines to prevent both cancers. Early detection of ovarian cancer requires a strategy with high sensitivity (>75% for stage I disease) and very high specificity (>99.6%) to achieve a positive predictive value of 10%. Transvaginal sonography (TVS) has achieved these values in some studies, but is limited by the cost of annual screening in a general population. Two-stage strategies that incorporate both serum markers and TVS promise to be more cost-effective. An algorithm has been developed that calculates risk of ovarian cancer based on serial CA125 values and refers patients at highest risks for TVS. Use of the algorithm is currently being evaluated in a trial with 200,000 women in the United Kingdom that will critically test the ability of a two-stage screening strategy to improve survival in ovarian cancer. Whatever the outcome, additional serum markers will be required to detect all patients in an initial phase of screening. More than 30 serum markers have been evaluated alone and in combination with CA125. Recent candidates include: HE4, mesothelin, M-CSF, osteopontin, kallikrein(s) and soluble EGF receptor. Proteomic approaches have been used to define a distinctive pattern of peaks on mass spectroscopy or to identify a limited number of critical markers that can be assayed by more conventional methods. Several groups are placing known markers on multiplex platforms to permit simultaneous assay of multiple markers with very small volumes of serum. Mathematical techniques are being developed to analyze combinations of marker levels to improve sensitivity and specificity. In the future, serum markers should improve the sensitivity of detecting recurrent disease as well as facilitate earlier detection of ovarian cancer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdollahi A, Roberts D, Godwin AK, Schultz DC, Sonoda G, Testa JR, Hamilton TC (1997) Identification of a zinc-finger gene at 6q25: a chromosomal region implicated in development of many solid tumors. Oncogene 14:1973–1979PubMedCrossRefGoogle Scholar
  2. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA; Gynecologic Oncology Group (2006) Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 5:354:34–43CrossRefGoogle Scholar
  3. Baggerly KA, Morris JS, Edmonson SR, Coombes KR (2005) Signal in noise: Evaluating reported reproducibility of proteomic tests for ovarian cancer. J Natl Cancer Inst 97:307–309PubMedCrossRefGoogle Scholar
  4. Barnes MN, Chhieng DF, Dreher M, Jones JL, Grizzle WE, Jones L, Talley L, Partridge EE (2005) Feasibility of performing chemoprevention trials in women at elevated risk of ovarian carcinoma: initial examination of celecoxib as a chemopreventive agent. Gynecol Oncol 98:376–382PubMedCrossRefGoogle Scholar
  5. Baron AT, Boardman CH, Lafky JM, Rademaker A, Liu D, Fishman DA, Podratz KC, Maihle NJ (2005) Soluble epidermal growth factor receptor (sEGFR) [corrected] and cancer antigen 125 (CA125) as screening and diagnostic tests for epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:306–318PubMedCrossRefGoogle Scholar
  6. Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB (1981) Knapp RC: Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 681:1331–1337CrossRefGoogle Scholar
  7. Bast RC Jr, Urban N, Shridhar V, Smith D, Zhang Z, Skates S, Lu K, Liu J, Fishman D, Mills GB (2002) Early detection of ovarian cancer: promise and reality. Cancer Treat Res 107:61–97PubMedGoogle Scholar
  8. Berchuck A, Kohler MF, Marks JR, Wiseman R, Boyd J, Bast RC Jr (1994) The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Am J Obstet Gynecol 170:246–252PubMedGoogle Scholar
  9. Berchuck A, Schildkraut JM, Wenham RM, Claingaert B, Ali S, Henriott A, Halabi S, Rodriguez G, Gertig D, Purdie DM, Keleman L, Spurdle AB, Marks J, Chenevix-Trench G (2004) Progesterone receptor promoter +331A polymorphism is associated with a reduced risk of endometrioid and clear cell ovarian cancers. Cancer Epidemiol Biomarkers Prev 13:2141–2147PubMedGoogle Scholar
  10. Berek JS, Bast RC Jr (2006) Ovarian cancer. In: Kufe DW, Bast RC Jr, Hait W, Hong WK, Pollock RE, Weichselbaum RR, Holland JF, Frei E III (eds) Holland-Frei Cancer Medicine, 7th edn. Decker, Hamilton, Ontario, pp 1543–1568Google Scholar
  11. Bourne TH, Campbell S, Reynolds KM, Whitehead MI, Hampson J, Royston P, Crayford T, Collins WP (1993) Screening for early familial ovarian cancer with transvaginal ultrasonography and colour blood flow imaging. BMJ 306:1025–1029PubMedGoogle Scholar
  12. Brewer M, Utzinger U, Li Y, Atkinson EN, Satterfield W, Auersperg N, Richards-Kortum R, Follen M, Bast R (2002) Fluorescence spectroscopy as a biomarker in a cell culture and in a nonhuman primate model for ovarian cancer chemopreventive agents. J Biomed Opt 1:20–26CrossRefGoogle Scholar
  13. Brewer M, Wharton JT, Wang J, McWatters A, Auersperg N, Gershenson D, Bast R, Zou C (2005) In vitro model of normal, immortalized ovarian surface epithelial and ovarian cancer cells for chemoprevention of ovarian cancer. Gynecol Oncol 98:182–192PubMedCrossRefGoogle Scholar
  14. Cramer DW, Titus-Ernstoff L, McKolanis JR, Welch WR, Vitonis AF, Berkowitz RS, Finn OJ (2005) Conditions associated with antibodies against the tumor-associated antigen MUC1 and their relationship to risk for ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:1125–1131PubMedCrossRefGoogle Scholar
  15. De Palo G, Mariani L, Camerini T, Marubini E, Formelli F, Pasini B, Decensi A, Veronesi U (2002) Effect of fenretinide on ovarian cancer occurrence. Gynecol Oncol 86:24–27PubMedCrossRefGoogle Scholar
  16. De Palo G, Veronesi U, Camerini T, Formelli F, Mascotti G, Boni C, Fosser V, Del Vecchio M, Campa T, Costa A (1995) Can fenretinide protect women against ovarian cancer? J Natl Cancer Inst 87:146–147PubMedCrossRefGoogle Scholar
  17. Diamandis EP, Yousef GM, Soosaipillai AR, Bunting P (2000) Human kallikrein 6 (zyme/protease M/neurosin): a new serum biomarker of ovarian carcinoma. Clin Biochem 33:579–583PubMedCrossRefGoogle Scholar
  18. Dowdy SC, Gostout BS, Shridhar V, Wu X, Smith DI, Podratz KC, Jiang SW (2005) Biallelic methylation and silencing of paternally expressed gene 3 (PEG3) in gynecologic cancer cell lines. Gynecol Oncol 99:126–134PubMedCrossRefGoogle Scholar
  19. Finch A, Shaw P, Rosen B, Murphy J, Narod SA, Colgan TJ (2006) Clinical and pathological findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gyn Oncol 100:58–64CrossRefGoogle Scholar
  20. Finn O (2004) History of tumour vaccines and novel approaches for preventive cancer vaccines. Dev Biol (Basel) 116:3–12Google Scholar
  21. Goff BA, Mandel L, Muntz HG, Melancon CH (2000) Ovarian carcinoma diagnosis. Cancer 89:2068–2075PubMedCrossRefGoogle Scholar
  22. Gorelik E, Landsittel DP, Marrangoni AM, Modugno F, Velikokhatnaya L, Winans MT, Bigbee WL, Herberman RB, Lokshin A (2005) Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:981–987PubMedCrossRefGoogle Scholar
  23. Jacobs IJ, Kohler MF, Wiseman R, Marks J, Whitaker R, Kerns BJM, Humphrey P, Berchuck A, Ponder BAJ, Bast RC Jr (1992) Clonal origin of epithelial ovarian cancer: Analysis by loss of heterozygosity, p53 mutation and X chromosome inactivation. J Natl Cancer Inst 84:1793–1798PubMedCrossRefGoogle Scholar
  24. Jacobs I, Stabile I, Bridges J, Kemsley P, Reynolds C, Grudzinskas J, Oram D (1999) Multimodal approach to screening for ovarian cancer. Lancet 1:268–271Google Scholar
  25. Jemal A, Siegal R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics. CA Cancer J Clin 56:106–130PubMedCrossRefGoogle Scholar
  26. Kim JH, Skates SJ, Uede T, Wong Kk KK, Schorge JO, Feltmate CM, Berkowitz RS, Cramer DW, Mok SC (2002) Osteopontin as a potential diagnostic for ovarian cancer. JAMA 287:1671–1679PubMedCrossRefGoogle Scholar
  27. Leitao M, Pothuri B, Viale A, Olshen A, Boyd J (2003) Gene expression profiling of ovarian cystic epithelium reveals a quasi-neoplastic phenotype. Gynecol Oncol 88:196Google Scholar
  28. Lu KH, Patterson AP, Wang L, Marquez RT, Atkinson EN, Baggerly KA, Ramoth L, Rosen DG, Liu J, Hellstrom I, Smith D, Hartmann L, Fishman D, Berchuck A, Schmandt R, Whitaker R, Gershenson DM, Mills GB, Bast RC Jr (2004) Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clinical Cancer Res 10:3291–3300CrossRefGoogle Scholar
  29. Luo LY, Bunting P, Scorilas A, Diamandis EP (2001) Human kallikrein 10: a novel tumor marker for ovarian carcinoma? Clin Chim Acta 306:111–118PubMedCrossRefGoogle Scholar
  30. Marquez RT, Baggerly KA, Patterson AP, Liu J, Broaddus R, Frumovitz M, Atkinson EN, Smith D, Hartmann L, Fishman D, Berchuck A, Whitaker R, Gershenson D, Mills GB, Bast RC Jr, Lu K (2005) Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium and colon. Clin Cancer Res 11:6116–6126PubMedCrossRefGoogle Scholar
  31. McIntosh MW, Drescher C, Karlan B, Scholler N, Urban N, Hellstrom KE, Hellstrom I (2004) Combining CA 125 and SMR serum markers for diagnosis and early detection of ovarian carcinoma. Gynecol Oncol 95:9–15PubMedCrossRefGoogle Scholar
  32. Menon U, Skates SJ, Lewis S, Rosenthal A, Rufford B, Sibley K, Macdonald N, Dawney A, Jeyarajah A, Bas RC Jr, Oram D, Jacobs IJ (2005) A prospective study using the risk of ovarian cancer algorithm to screen for ovarian cancer. J Clin Oncol 23:7919–7926PubMedCrossRefGoogle Scholar
  33. Mills GB, Lu Y, Fang X, Wang H, Eder A, Mao M, Swaby R, Cheng KW, Stokoe D, Siminovitch K, Jaffe R, Gray J (2001) The role of genetic abnormalities of PTEN and the phosphotidylinositol 3-kinase pathway in breast and ovarian tumorigenesis, prognosis and therapy. Semin Oncol 28:125–141PubMedCrossRefGoogle Scholar
  34. Mok SC, Chao J, Skates S, Wong K, Yiu GK, Muto MG, Berkowitz RS, Cramer DW (2001) Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 93:1458–1464PubMedCrossRefGoogle Scholar
  35. Narod SA, Dube MP, Klijn J, Lubinski J, Lynch HT, Ghadirian P, Provencher D, Heimdal K, Moller P, Robson M, Offit K, Isaacs C, Weber B, Friedman E, Gershoni-Baruch R, Rennert G, Pasini B, Wagner T, Daly M, Garber JE, Neuhausen SL, Ainsworth P, Olsson H, Evans G, Osborn M, Couch F, Foulkes WD, Warner E, Kim-Sing C, Olopade O, Tung N, Saal HM, Weitzel J, Merajver S, Gauthier-Villars M, Jernstrom H, Sun P, Brunet JS (2002) Oral contraceptives and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 23:1773–1779Google Scholar
  36. Negri E, Franceschi S, Tzonou A et al (1991) Pooled analysis of three European case-control studies of epithelial ovarian cancer: Reproductive factors and risk of epithelial ovarian cancer. Int J Cancer 49:50–56PubMedCrossRefGoogle Scholar
  37. Nishimoto A, Yu Y, Lu Z, Liao W S-L, Bast RC Jr, Luo RZ (2005) ARHI directly inhibits STAT3 translocation and activity in human breast and ovarian cancer cells. Cancer Res 65:6701–6710PubMedCrossRefGoogle Scholar
  38. Ozols RF, Daly MB, Klein-Szanto A, Hamilton TC, Bast RC, Brewer MA (2003) Chemoprevention of ovarian cancer: The journey begins. Gynecol Oncol 88:S59–S66; discussion S67–S70PubMedCrossRefGoogle Scholar
  39. Patton SE, Martin ML, Nelson LL, Fang XJ, Mills GB, Bast RC Jr, Ostrowski MC (1998) Activation of the Ras-MAP pathway and phosphorylation of ets-2 at position threonine 72 in human ovarian cancer cell lines. Cancer Res 58:2253–2259PubMedGoogle Scholar
  40. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA (2002) Use of proteomic patterns in serum to identify ovarian cancers. Lancet 359:572–577PubMedCrossRefGoogle Scholar
  41. Pothuri B, Leitao M, Barakat R, Akram M, Bogomolniy F, Olvera N, Lin O, Soslow R, Robson M, Offit K, Boyd J (2004) Analysis of ovarian carcinoma histogenesis. SGO Abstract #616Google Scholar
  42. Rodriguez GC, Walmer DK, Cline M, Krigman H, Lessey BA, Whitaker RS, Dodge R, Hughes CL (1998) Effect of progestin on the ovarian epithelium of macaques: cancer prevention through apoptosis? J Soc Gynecol Investig 5:271–276PubMedCrossRefGoogle Scholar
  43. Sato S, Yokoyama Y, Sakamota T, Futagami M, Saito Y (2001) Usefulness of mass screening for ovarian carcinoma using transvaginal ultrasonography. Cancer 89:582–588CrossRefGoogle Scholar
  44. Schummer M, Ng WV, Bumgarner RE, Nelson PS, Schummer B, Bednarski DW, Hassell L, Baldwin RL, Karlan BY, Hood L (1999) Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene 238:375–385PubMedCrossRefGoogle Scholar
  45. Skates SJ, Xu F-J, Yu Y-H, Sjövall K, Einhorn N, Chang YC, Bast RC Jr, Knapp RC (1995) Toward an optimal algorithm for ovarian cancer screening with longitudinal tumor markers. Cancer 76:2004–2010PubMedCrossRefGoogle Scholar
  46. Skates SJ, Horick N, Yu Y, Xu F-J, Berchuck A, Havrilesky L, de Bruijn HW, van der Zee AGJ, Woolas RP, Jacobs IJ, Zhang Z, Bast RC Jr (2004) Pre-operative sensitivity and specificity for early stage ovarian cancer when combining CA 125, CA 15.3, CA 72.4 and M-CSF using mixtures of multivariate normal distributions. J Clin Oncol 22:4059–4066PubMedCrossRefGoogle Scholar
  47. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M (2005) Adenoma Prevention with Celecoxib (APC) Study investigators. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080PubMedCrossRefGoogle Scholar
  48. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M (1999) MUC1 and cancer. Biochim Biophys Acta. 1455:301–313PubMedGoogle Scholar
  49. Utzinger U, Brewer M, Silva E, Gershenson D, Bast RC Jr, Mitchell MF, Richards-Kortum R (2001) Reflectance spectroscopy for in vivo characterization of ovarian tissue. Lasers Surg Med 28:56–66PubMedCrossRefGoogle Scholar
  50. Van Nagell JR, Depriest PD, Reedy MB, Gallion HH, Ueland FR, Pavlik EJ, Kryscio RJ (2000) The efficacy of transvaginal sonographic screening in asymptomatic women at risk for ovarian cancer. Gynecol Oncol 77:350–356PubMedCrossRefGoogle Scholar
  51. Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Meth 243:243–255CrossRefGoogle Scholar
  52. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G (1998) Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 280:719–723PubMedCrossRefGoogle Scholar
  53. Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ (1998) Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 90:447–454PubMedCrossRefGoogle Scholar
  54. Yu Y, Xu F, Fang X, Zhao S, Li Y, Cuevas B, Kuo W-L, Gray JW, Siciliano M, Mills G, Bast RC Jr (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A 96:214–219PubMedCrossRefGoogle Scholar
  55. Zhang Z, Bast RC Jr, Yu Y, Li Jinong, Sokoll LJ, Rai A, Rosenzweig JM, Cameron B, Meng X-Y, Berchuck A, van Haaften-Day C, Hacker NF, de Bruijn HWA, van der Zee A, Jacobs IJ, Fung ET, Chan D (2004) A panel of serum biomarkers identified through proteomic profiling for the detection of early stage ovarian cancer. Cancer Res 64:5882–5890PubMedCrossRefGoogle Scholar
  56. Zhang Z, Xu F-J, Yu Y, Berchuck A, Havrilesky L, de Bruijn HW, van der Zee A, Woolas RP, Jacobs IJ, Skates S, Bast RC Jr (2006) Detection of Stage I epithelial ovarian cancer using an artificial neural network derived composite index of multiple serum markers. Gynecol Oncol, in revisionGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert C. BastJr.
    • 1
  • Molly Brewer
    • 2
  • Changping Zou
    • 2
  • Mary A. Hernandez
    • 3
  • Mary Daley
    • 4
  • Robert Ozols
    • 4
  • Karen Lu
    • 5
  • Zhen Lu
    • 3
  • Donna Badgwell
    • 3
  • Gordon B. Mills
    • 6
  • Steven Skates
    • 7
  • Zhen Zhang
    • 8
  • Dan Chan
    • 8
  • Anna Lokshin
    • 9
  • Yinhua Yu
    • 3
  1. 1.Unit 355M.D. Anderson Cancer CenterHoustonUSA
  2. 2.Division of Gynecologic OncologyUniversity of ArizonaTucsonUSA
  3. 3.Department of Experimental TherapeuticsUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  4. 4.Fox Chase Cancer CenterPhiladelphiaUSA
  5. 5.Department of Gynecologic OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  6. 6.Department of Molecular TherapeuticsUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  7. 7.Massachusetts General Hospital and Harvard Medical SchoolBostonUSA
  8. 8.Johns Hopkins Medical CenterBaltimoreUSA
  9. 9.Cancer InstituteUniversity of PittsburghPittsburghUSA

Personalised recommendations