Advertisement

Genetics of Autism

  • Brett S. Abrahams
  • Daniel H. Geschwind

Abstract

We have learned more about the molecular genetics of autism in the last 3 years than in the previous 30. This includes both a new appreciation for the role of rare genetic variation and the identification of the first contributory common variants by genome-wide association. These data show that although the population attributable risk of common variation may be moderate to large, the genotype risk of common variants at the individual level are small. In contrast, a large number of diverse rare mutations of large effect have been identified, but none appear specific to autism. All of these findings point to extreme genetic heterogeneity suggesting complex gene-gene or gene-environment interactions in autism etiology. Available knowledge, reviewed below, also suggests that phenotypic presentation is the result of complex interactions, and that implicated genetic risk factors in many cases cross the boundaries of established clinical diagnostic categories. Acceptance of this complexity and efforts to understand genetic variation in terms of intermediate phenotypes represent important directions for future research.

Keywords

Autism Spectrum Disorder Autism Spectrum Disorder Tourette Syndrome Rett Syndrome Acad Child Adolesc Psychiatry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahams BS, Geschwind DH (2009) Connecting genes to brain in the autisms. Arch Neurol (in press)Google Scholar
  2. 2.
    Abrahams BS, Tentler D, Perederiy JV, Oldham MC, Coppola G, Geschwind DH (2007) Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci USA 104(45):17849–17854PubMedCrossRefGoogle Scholar
  3. 3.
    Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355PubMedCrossRefGoogle Scholar
  4. 4.
    Alarcon M, Abrahams BS, Stone JL et al (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82(1):150–159PubMedCrossRefGoogle Scholar
  5. 5.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188PubMedCrossRefGoogle Scholar
  6. 6.
    Weiss, Arking DE on behalf of the Gene Discovery Project of John Hopkins and the Autism Consortium (2009) A genome-wide linkage and association scan reveals novel loci for autism. Nature (in press)Google Scholar
  7. 7.
    Arking DE, Cutler DJ, Brune CW et al (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82(1):160–164PubMedCrossRefGoogle Scholar
  8. 8.
    Artigiani S, Conrotto P, Fazzari P et al (2004) Plexin-B3 is a functional receptor for semaphorin 5A. EMBO Rep 5(7):710–714PubMedCrossRefGoogle Scholar
  9. 9.
    Badner JA, Gershon ES (2002) Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol Psychiatry 7(1):56–66PubMedCrossRefGoogle Scholar
  10. 10.
    Baker P, Piven J, Sato Y (1998) Autism and tuberous sclerosis complex: prevalence and clinical features. J Autism Dev Disord 28(4):279–285PubMedCrossRefGoogle Scholar
  11. 11.
    Bailey A, Le Couteur A, Gottesman I et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77PubMedCrossRefGoogle Scholar
  12. 12.
    Baird G, Charman T, Pickles A et al (2008) Regression, developmental trajectory and associated problems in disorders in the autism spectrum: the SNAP study. J Autism Dev Disord 38(10):1827–1836PubMedCrossRefGoogle Scholar
  13. 13.
    Bakkaloglu B, O'Roak BJ, Louvi A et al (2008) Molecular cytogenetic analysis and resequencing of contactin associated Protein-Like 2 in autism spectrum disorders. Am J Hum Genet 82(1):165–173PubMedCrossRefGoogle Scholar
  14. 14.
    Belloso JM, Bache I, Guitart M et al (2007) Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. Eur J Hum Genet 15(6):711–713PubMedCrossRefGoogle Scholar
  15. 15.
    Ben-Shachar S, Lanpher B, German JR (2009) Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. J Med Genet 46(6):382–388PubMedCrossRefGoogle Scholar
  16. 16.
    Biederer T, Sudhof TC (2000) Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J Biol Chem 275(51):39803–39806Google Scholar
  17. 17.
    Bijlsma EK, Gijsbers AC, Schuurs-Hoeijmakers JH (2009) Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet 52:77–87PubMedCrossRefGoogle Scholar
  18. 18.
    Bishop DV, Maybery M, Maley A, Wong D, Hill W, Hallmayer J (2004) Using self-report to identify the broad phenotype in parents of children with autistic spectrum disorders: a study using the autism-spectrum quotient. J Child Psychol Psychiatry 45(8):1431–1436PubMedCrossRefGoogle Scholar
  19. 19.
    Bittel DC, Kibiryeva N, Butler MG (2006) Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader—Willi syndrome. Pediatrics 118(4):e1276–e1283PubMedCrossRefGoogle Scholar
  20. 20.
    Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40(6):695–701PubMedCrossRefGoogle Scholar
  21. 21.
    Bolton P, Macdonald H, Pickles A et al (1994) A case-control family history study of autism. J Child Psychol Psychiatry 35(5):877–900PubMedCrossRefGoogle Scholar
  22. 22.
    Bonati MT, Russo S, Finelli P et al (2007) Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics 8(3):169–178PubMedCrossRefGoogle Scholar
  23. 23.
    Bonora E, Beyer KS, Lamb JA et al (2003) Analysis of reelin as a candidate gene for autism. Mol Psychiatry 8(10):885–892PubMedCrossRefGoogle Scholar
  24. 24.
    Boteva K, Lieberman J (2003) Reconsidering the classification of schizophrenia and manic depressive illness—a critical analysis and new conceptual model. World J Biol Psychiatry 4(2):81–92PubMedGoogle Scholar
  25. 25.
    Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neur-exins. Neuron 48(2):229–236PubMedCrossRefGoogle Scholar
  26. 26.
    Bucan M, Abrahams BS, Wang K (2009) Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PloS Genetics 5:e1000536PubMedCrossRefGoogle Scholar
  27. 27.
    Butler MG, Dasouki MJ, Zhou XP et al (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42(4):318–321PubMedCrossRefGoogle Scholar
  28. 28.
    Buxbaum JD, Silverman J, Keddache M et al (2004) Linkage analysis for autism in a subset families with obsessive-compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol Psychiatry 9(2):144–150PubMedCrossRefGoogle Scholar
  29. 29.
    Cai G, Edelmann L, Goldsmith JE et al (2008) Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: Efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Med Genomics 1:50PubMedCrossRefGoogle Scholar
  30. 30.
    Campbell DB, Sutcliffe JS, Ebert PJ et al (2006) A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA 103(45):16834–16839PubMedCrossRefGoogle Scholar
  31. 31.
    Campbell DB, D'Oronzio R, Garbett K et al (2007) Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol 62(3):243–250PubMedCrossRefGoogle Scholar
  32. 32.
    Campbell DB, Buie TM, Winter H et al (2009) Distinct genetic risk based on association of MET in families with co-occurring autism and gastrointestinal conditions. Pediatrics 123(3):1018–1024PubMedCrossRefGoogle Scholar
  33. 33.
    Cantor RM, Kono N, Duvall JA et al (2005) Replication of autism linkage: fine-mapping peak at 17q21. Am J Hum Genet 76(6):1050–1056PubMedCrossRefGoogle Scholar
  34. 34.
    Cantor RM, Yoon JL, Furr J, Lajonchere CM (2007) Paternal age and autism are associated in a family-based sample. Mol Psychiatry 12(5):419–421PubMedCrossRefGoogle Scholar
  35. 35.
    Catalucci D, Zhang DH, DeSantiago J et al (2009) Akt regulates L-type Ca2+ channel activity by modulating Cavalpha1 protein stability. J Cell Biol 184(6):923–933PubMedCrossRefGoogle Scholar
  36. 36.
    CDC (2007) Prevalence of autism spectrum disorders -Autism and developmental disabilities monitoring network. MMWR Surveill Summ 56:1–28Google Scholar
  37. 37.
    Chang Q, Khare G, Dani V, Nelson S, Jaenisch R (2006) The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49(3):341–348PubMedCrossRefGoogle Scholar
  38. 38.
    Chen GK, Kono N, Geschwind DH, Cantor RM (2006) Quantitative trait locus analysis of nonverbal communication in autism spectrum disorder. Mol Psychiatry 11(2):214–220PubMedCrossRefGoogle Scholar
  39. 39.
    Chen WG, Chang Q, Lin Y et al (2003) Derepression of BDNF transcription involves calcium-dependent phospho-rylation of MeCP2. Science 302(5646):885–889PubMedCrossRefGoogle Scholar
  40. 40.
    Conrotto P, Corso S, Gamberini S, Comoglio PM, Giordano S (2004) Interplay between scatter factor receptors and B plex-ins controls invasive growth. Oncogene 23(30):5131–5137PubMedCrossRefGoogle Scholar
  41. 41.
    Cook EH Jr, Lindgren V, Leventhal BL et al (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60(4):928–934PubMedGoogle Scholar
  42. 42.
    Craddock N, O'Donovan MC, Owen MJ (2006) Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology, Schizophr. Bull 32(1):9–16Google Scholar
  43. 43.
    Delorme R, Gousse V, Roy I et al (2007) Shared executive dysfunctions in unaffected relatives of patients with autism and obsessive-compulsive disorder. Eur Psychiatry 22(1):32–38PubMedCrossRefGoogle Scholar
  44. 44.
    Dempster EL, Toulopoulou T, McDonald C et al (2006) Episodic memory performance predicted by the 2bp deletion in exon 6 of the “alpha 7-like” nicotinic receptor subunit gene. Am J Psychiatry 163(10):1832–1834PubMedCrossRefGoogle Scholar
  45. 45.
    Descheemaeker MJ, Govers V, Vermeulen P, Fryns JP (2006) Pervasive developmental disorders in Prader—Willi syndrome: the Leuven experience in 59 subjects and controls. Am J Med Genet 140(11):1136–1142PubMedCrossRefGoogle Scholar
  46. 46.
    Deykin EY, MacMahon B (1979) Viral exposure and autism. Am J Epidemiol 109(6):628–638PubMedGoogle Scholar
  47. 47.
    Doornbos M, Sikkema-Raddatz B, Ruijvenkamp CA (2009) Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader—Willi critical region, possibly associated with behavioural disturbances. Eur J Med Genet 52(2-3):108–115PubMedCrossRefGoogle Scholar
  48. 48.
    Durand CM, Betancur C, Boeckers TM et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27PubMedCrossRefGoogle Scholar
  49. 49.
    Duvall JA, Lu A, Cantor RM, Todd RD, Constantino JN, Geschwind DH (2007) A quantitative trait locus analysis of social responsiveness in multiplex autism families. Am J Psychiatry 164(4):656–662PubMedCrossRefGoogle Scholar
  50. 50.
    Feng J, Schroer R, Yan J et al (2006) High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett 409(1):10–13PubMedCrossRefGoogle Scholar
  51. 51.
    Fernandez T, Morgan T, Davis N et al (2004) Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet 74(6):1286–1293PubMedCrossRefGoogle Scholar
  52. 52.
    Fine SE, Weissman A, Gerdes M et al (2005) Autism spectrum disorders and symptoms in children with molecularly confirmed 22q11.2 deletion syndrome. J Autism Dev Disord 35(4):461–470PubMedCrossRefGoogle Scholar
  53. 53.
    Folstein SE, Rutter ML (1988) Autism: familial aggregation and genetic implications. J Autism Dev Disord 18(1): 3–30PubMedCrossRefGoogle Scholar
  54. 54.
    Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65(6):591–598PubMedCrossRefGoogle Scholar
  55. 55.
    Geschwind DH (2008) Autism: many genes, common pathways? Cell 135(3):391–395PubMedCrossRefGoogle Scholar
  56. 56.
    Geschwind DH (2009) Advances in autism. Annu Rev Med 60:367–380PubMedCrossRefGoogle Scholar
  57. 57.
    Geschwind DH, Sowinski J, Lord C et al (2001) The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am J Hum Genet 69(2):463–466PubMedCrossRefGoogle Scholar
  58. 58.
    Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH (2004) Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry 9(5):474–484PubMedCrossRefGoogle Scholar
  59. 59.
    Gillberg C, Billstedt E (2000) Autism and Asperger syndrome: coexistence with other clinical disorders. Acta Psychiatr Scand 102(5):321–330PubMedCrossRefGoogle Scholar
  60. 60.
    Glasson EJ, Bower C, Petterson B, de Klerk N, Chaney G, Hallmayer JF (2004) Perinatal factors and the development of autism: a population study. Arch Gen Psychiatry 61(6):618–627PubMedCrossRefGoogle Scholar
  61. 61.
    Glessner JT, Wang K, Cai G et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569–573PubMedCrossRefGoogle Scholar
  62. 62.
    Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645PubMedCrossRefGoogle Scholar
  63. 63.
    Hansen RL, Ozonoff S, Krakowiak P et al (2008) Regression in autism: prevalence and associated factors in the CHARGE Study. Ambul Pediatr 8(1):25–31PubMedCrossRefGoogle Scholar
  64. 64.
    Hatton DD, Sideris J, Skinner M et al (2006) Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet 140(17):1804–1813CrossRefGoogle Scholar
  65. 65.
    Hemara-Wahanui A, Berjukow S, Hope CI (2005) A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Natl Acad Sci USA 102(21):7553–7558PubMedCrossRefGoogle Scholar
  66. 66.
    Hertz-Picciotto I, Delwiche L (2009) The rise in autism and the role of age at diagnosis. Epidemiology 20(1):84–90PubMedCrossRefGoogle Scholar
  67. 67.
    International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210):237–241CrossRefGoogle Scholar
  68. 68.
    Jackman C, Horn ND, Molleston JP, Sokol DK (2009) Gene associated with seizures, autism, and hepatomegaly in an amish girl. Pediatr Neurol 40(4):310–313PubMedCrossRefGoogle Scholar
  69. 69.
    Jacquemont ML, Sanlaville D, Redon R et al (2006) Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet 43(11):843–849PubMedCrossRefGoogle Scholar
  70. 70.
    Jamain S, Quach H, Betancur C et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29PubMedCrossRefGoogle Scholar
  71. 71.
    Jansiewicz EM, Goldberg MC, Newschaffer CJ, Denckla MB, Landa R, Mostofsky SH (2006) Motor signs distinguish children with high functioning autism and Asperger's syndrome from controls. J Autism Dev Disord 36(5):613–621PubMedCrossRefGoogle Scholar
  72. 72.
    Jorde LB, Hasstedt SJ, Ritvo ER et al (1991) Complex segregation analysis of autism. Am J Hum Genet 49(5):932–938PubMedGoogle Scholar
  73. 73.
    Kent L, Bowdin S, Kirby GA, Cooper WN, Maher ER (2008) Beckwith Weidemann syndrome: a behavioral phe-notype-genotype study. Am J Med Genet B Neuropsychiatr Genet 147B(7):1295–1297PubMedCrossRefGoogle Scholar
  74. 74.
    Kim HG, Kishikawa S, Higgins AW et al (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82(1):199–207PubMedCrossRefGoogle Scholar
  75. 75.
    Kirov G, Gumus D, Chen W et al (2008) Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 17(3):458–465PubMedCrossRefGoogle Scholar
  76. 76.
    Kozlov SV, Bogenpohl JW, Howell MP et al (2007) The imprinted gene Magel2 regulates normal circadian output. Nat Genet 39(10):1266–1272PubMedCrossRefGoogle Scholar
  77. 77.
    Krakowiak P, Goodlin-Jones B, Hertz-Picciotto I, Croen LA, Hansen RL (2008) Sleep problems in children with autism spectrum disorders, developmental delays, and typical development: a population-based study. J Sleep Res 17(2):197–206PubMedCrossRefGoogle Scholar
  78. 78.
    Kumar RA, KaraMohamed S, Sudi J (2008) Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 17(4):628–638PubMedCrossRefGoogle Scholar
  79. 79.
    Kumar RA, Marshall CR, Badner JA, 2 (2009) Association and mutation analyses of 16p11.2 autism candidate genes. PLoS One 4:e4582PubMedCrossRefGoogle Scholar
  80. 80.
    Laumonnier F, Bonnet-Brilhault F, Gomot M et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557PubMedCrossRefGoogle Scholar
  81. 81.
    Lawson-Yuen A, Saldivar JS, Sommer S, Picker J (2008) Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet 16(5):614–618PubMedCrossRefGoogle Scholar
  82. 82.
    Levitt P, Campbell DB (2009) The genetic and neurobio-logic compass points toward common signaling dysfunctions in autism spectrum disorders. J Clin Invest 119(4):747–754PubMedCrossRefGoogle Scholar
  83. 83.
    Landa R, Piven J, Wzorek MM, Gayle JO, Chase GA, Folstein SE (1992) Social language use in parents of autistic individuals. Psychol Med 22(1):245–254PubMedCrossRefGoogle Scholar
  84. 84.
    Leekam SR, Nieto C, Libby SJ, Wing L, Gould J (2007) Describing the sensory abnormalities of children and adults with autism. J Autism Dev Disord 37(5):894–910PubMedCrossRefGoogle Scholar
  85. 85.
    Lintas C, Sacco R, Garbett K et al (2009) Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Mol Psychiatry 14:705–718PubMedCrossRefGoogle Scholar
  86. 86.
    Lowenthal R, Paula CS, Schwartzman JS, Brunoni D, Mercadante MT (2007) Prevalence of pervasive developmental disorder in Down's syndrome. J Autism Dev Disord 37(7):1394–1395PubMedCrossRefGoogle Scholar
  87. 87.
    Maestrini E, Pagnamenta AT, Lamb JA et al (2009) High-density SNP association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L-DOCK4 gene region in autism susceptibility. Mol Psychiatry (in press)Google Scholar
  88. 88.
    Malow BA, Marzec ML, McGrew SG, Wang L, Henderson LM, Stone WL (2006) Characterizing sleep in children with autism spectrum disorders: a multidimensional approach. Sleep 29(12):1563–1571PubMedGoogle Scholar
  89. 89.
    Manning MA, Cassidy SB, Clericuzio C et al (2004) Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 114(2):451–457PubMedCrossRefGoogle Scholar
  90. 90.
    Marshall CR, Noor A, Vincent JB et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82(2):477–488PubMedCrossRefGoogle Scholar
  91. 91.
    Mefford HC, Sharp AJ, Baker C (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359(16):1685–1699PubMedCrossRefGoogle Scholar
  92. 92.
    Melke J, Goubran Botros H, Chaste P et al (2008) Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry 13(1):90–98PubMedCrossRefGoogle Scholar
  93. 93.
    Milani D, Pantaleoni C, D'Arrigo S, Selicorni A, Riva D (2005) Another patient with MECP2 mutation without classic Rett syndrome phenotype. Pediatr Neurol 32(5):355–357PubMedCrossRefGoogle Scholar
  94. 94.
    Ming X, Brimacombe M, Wagner GC (2007) Prevalence of motor impairment in autism spectrum disorders. Brain Dev 29(9):565–570PubMedCrossRefGoogle Scholar
  95. 95.
    Moessner R, Marshall CR, Sutcliffe JS et al (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297PubMedCrossRefGoogle Scholar
  96. 96.
    Molloy CA, Keddache M, Martin LJ (2005) Evidence for linkage on 21q and 7q in a subset of autism characterized by developmental regression. Mol Psychiatry 10(8):741–746PubMedCrossRefGoogle Scholar
  97. 97.
    Morrow EM, Yoo SY, Flavell SW et al (2008) Identifying autism loci and genes by tracing recent shared ancestry. Science 321(5886):218–223PubMedCrossRefGoogle Scholar
  98. 98.
    Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134(6):1042–1054PubMedCrossRefGoogle Scholar
  99. 99.
    Need AC, Ge D, Weale ME et al (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5(2):e1000373PubMedCrossRefGoogle Scholar
  100. 100.
    Nishimura Y, Martin CL, Vazquez-Lopez A et al (2007) Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 16(14):1682–1698PubMedCrossRefGoogle Scholar
  101. 101.
    Orrico A, Galli L, Buoni S, Orsi A, Vonella G, Sorrentino V (2009) Novel PTEN mutations in neurodevelopmental disorders and macrocephaly. Clin Genet 75(2):195–198PubMedCrossRefGoogle Scholar
  102. 102.
    Peters SU, Beaudet AL, Madduri N, Bacino CA (2004) Autism in Angelman syndrome: implications for autism research. Clin Genet 66(6):530–536PubMedCrossRefGoogle Scholar
  103. 103.
    Philippi A, Roschmann E, Tores F et al (2005) Haplotypes in the gene encoding protein kinase c-beta (PRKCB1) on chromosome 16 are associated with autism. Mol Psychiatry 10(10):950–960PubMedCrossRefGoogle Scholar
  104. 104.
    Piven J, Palmer P (1997) Cognitive deficits in parents from multiple-incidence autism families. J Child Psychol Psychiatry 38(8):1011–1021PubMedCrossRefGoogle Scholar
  105. 105.
    Poliak S, Gollan L, Martinez R (1999) Caspr2, a new member of the neurexin superfamily, is localized at the juxta-paranodes of myelinated axons and associates with K + channels. Neuron 24(4):1037–1047PubMedCrossRefGoogle Scholar
  106. 106.
    Potocki L, Bi W, Treadwell-Deering D (2007) Characterization of Potocki-Lupski syndrome (dup(17) (p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 80(4):633–649PubMedCrossRefGoogle Scholar
  107. 107.
    Reichenberg A, Gross R, Weiser M et al (2006) Advancing paternal age and autism. Arch Gen Psychiatry 63(9):1026–1032PubMedCrossRefGoogle Scholar
  108. 108.
    Ritvo ER, Jorde LB, Mason-Brothers A et al (1989) The UCLA-University of Utah epidemiologic survey of autism: recurrence risk estimates and genetic counseling. Am J Psychiatry 146(8):1032–1036PubMedGoogle Scholar
  109. 109.
    Ronald A, Happe F, Bolton P et al (2006) Genetic heterogeneity between the three components of the autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry 45(6):691–699PubMedCrossRefGoogle Scholar
  110. 110.
    Roohi J, Montagna C, Tegay DH et al (2009) Disruption of contactin 4 in three subjects with autism spectrum disorder. J Med Genet 46(3):176–182PubMedCrossRefGoogle Scholar
  111. 111.
    Rujescu D, Ingason A, Cichon S et al (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 18(5):988–996PubMedGoogle Scholar
  112. 112.
    Rujescu D, Meisenzahl EM, Krejcova S (2007) Plexin B3 is genetically associated with verbal performance and white matter volume in human brain. Mol Psychiatry 12(2):190– 194 115PubMedCrossRefGoogle Scholar
  113. 113.
    Rzhetsky A, Wajngurt D, Park N, Zheng T (2007) Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci USA 104(28):11694–11699PubMedCrossRefGoogle Scholar
  114. 114.
    Sadakata T, Washida M, Iwayama Y et al (2007) Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest. 117(4):931–943PubMedCrossRefGoogle Scholar
  115. 115.
    Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 14(4):483–492PubMedCrossRefGoogle Scholar
  116. 116.
    Sebat J, Lakshmi B, Malhotra D et al (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–449PubMedCrossRefGoogle Scholar
  117. 117.
    Schellenberg GD, Dawson G, Sung YJ et al (2006) Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry 11(11):1049–1060PubMedCrossRefGoogle Scholar
  118. 118.
    Sharp AJ, Mefford HC, Li K (2008) A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 40(3):322–328PubMedCrossRefGoogle Scholar
  119. 119.
    Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry. 47(8):921–929PubMedCrossRefGoogle Scholar
  120. 120.
    Splawski I, Timothy KW, Sharpe LM (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31PubMedCrossRefGoogle Scholar
  121. 121.
    Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281(31):22085–22091PubMedCrossRefGoogle Scholar
  122. 122.
    Stefansson H, Rujescu D, Cichon S et al (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455(7210):232–236PubMedCrossRefGoogle Scholar
  123. 123.
    Steffenburg S, Gillberg C, Hellgren L et al (1989) A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 30(3):405–416PubMedCrossRefGoogle Scholar
  124. 124.
    Stone JL, Merriman B, Cantor RM et al (2004) Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet 75(6):1117–1123PubMedCrossRefGoogle Scholar
  125. 125.
    Strauss KA, Puffenberger EG, Huentelman MJ et al (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354(13):1370–1377PubMedCrossRefGoogle Scholar
  126. 126.
    Strom SP, Stone JL, ten Bosch JR et al (2009) High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol Psychiatry (in press)Google Scholar
  127. 127.
    Sutcliffe JS, Delahanty RJ, Prasad HC et al (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet 77(2):265–279PubMedCrossRefGoogle Scholar
  128. 128.
    Szatmari P, Paterson AD, Zwaigenbaum L et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328PubMedCrossRefGoogle Scholar
  129. 129.
    Tierney E, Nwokoro NA, Porter FD, Freund LS, Ghuman JK, Kelley RI (2001) Behavior phenotype in the RSH/ Smith-Lemli-Opitz syndrome. Am J Med Genet 98(2):191–200PubMedCrossRefGoogle Scholar
  130. 130.
    Trikalinos TA, Karvouni A, Zintzaras E et al (2006) A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol Psychiatry 11(1):29–36PubMedCrossRefGoogle Scholar
  131. 131.
    Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1(6):352–358PubMedCrossRefGoogle Scholar
  132. 132.
    Ueda S, Fujimoto S, Hiramoto K, Negishi M, Katoh H (2008) Dock4 regulates dendritic development in hip-pocampal neurons. J Neurosci Res 86(14):3052–3061PubMedCrossRefGoogle Scholar
  133. 133.
    van Bon BW, Mefford HC, Menten B et al (2009) Further delineation of the 15q13 microdeletion and duplication syndromes: A clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet 46(8):511–23PubMedCrossRefGoogle Scholar
  134. 134.
    Van Esch H, Bauters M, Ignatius J et al (2005) Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet 77(3):442–453CrossRefGoogle Scholar
  135. 135.
    Varga EA, Pastore M, Prior T, Herman GE, McBride KL (2009) The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med 11(2): 111–117PubMedCrossRefGoogle Scholar
  136. 136.
    Verkerk AJ, Mathews CA, Joosse M, Eussen BH, Heutink P, Oostra BA (2003) CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics 82(1):1–9PubMedCrossRefGoogle Scholar
  137. 137.
    Vernes SC, Newbury DF, Abrahams BS et al (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359(22): 2337–2345PubMedCrossRefGoogle Scholar
  138. 138.
    Volkmar FR, Nelson DS (1990) Seizure disorders in autism. J Am Acad Child Adolesc Psychiatry 29(1):127–129PubMedCrossRefGoogle Scholar
  139. 139.
    Vorstman JA, Morcus ME, Duijff SN (2006) The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry 45(9):1104–1113PubMedCrossRefGoogle Scholar
  140. 140.
    Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L (2006) Identification of novel autism candidate regions through analysis of reported cyto-genetic abnormalities associated with autism. Mol Psychiatry 11(1):18–28 1CrossRefGoogle Scholar
  141. 141.
    Wang K, Zhang H, Ma D (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459(7246):528–533PubMedCrossRefGoogle Scholar
  142. 142.
    Weiss LA, Escayg A, Kearney JA et al (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8(2):186–194PubMedCrossRefGoogle Scholar
  143. 143.
    Weiss LA, Kosova G, Delahanty RJ et al (2006) Variation in ITGB3 is associated with whole-blood serotonin level and autism susceptibility. Eur J Hum Genet 14(8): 923–931PubMedCrossRefGoogle Scholar
  144. 144.
    Weiss LA, Shen Y, Korn JM (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358(7):667–675PubMedCrossRefGoogle Scholar
  145. 145.
    Wong D, Maybery M, Bishop DV, Maley A, Hallmayer J (2006) Profiles of executive function in parents and siblings of individuals with autism spectrum disorders. Genes Brain Behav 5(8):561–576PubMedCrossRefGoogle Scholar
  146. 146.
    Xue M, Brimacombe M, Chaaban J, Zimmerman-Bier B, Wagner GC (2008) Autism spectrum disorders: concurrent clinical disorders. J Child Neurol 23(1):6–13Google Scholar
  147. 147.
    Yan J, Oliveira G, Coutinho A et al (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychi-atric patients. Mol Psychiatry 10(4):329–332PubMedCrossRefGoogle Scholar
  148. 148.
    Zafeiriou DI, Ververi A, Vargiami E (2007) Childhood autism and associated comorbidities. Brain Dev 29(5): 257–272PubMedCrossRefGoogle Scholar
  149. 149.
    Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302(5646):826–830PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Brett S. Abrahams
    • 1
  • Daniel H. Geschwind
    • 2
  1. 1.Program in Neurogenetics and Department of Neurology Semel Institute for Neuroscience and Behavior at the David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Programs in Neurogenetics and Neurobehavioural Genetics, Neurology Department, and Semel Institute for Neuroscience and Behavior, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations