Discovering Mathematics with Magma pp 63-91

Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 19)

Some ternary Diophantine equations of signature (n, n, 2)

  • Nils Bruin

Abstract

In this article, we will determine the primitive integral solutions x, y, z to equations of the form

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Michael A. Bennett, Chris M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56-1 (2004), 23–54.MathSciNetGoogle Scholar
  2. 2.
    2. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265. See also the Magma home page at http://magma.maths.usyd.edu.au/magma/.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    3. N. R. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, Dissertation, University of Leiden, Leiden, 1999, CWI Tract 133, Amsterdam: Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica, 2002.Google Scholar
  4. 4.
    4. Nils Bruin, Algae, a program for 2-Selmer groups of elliptic curves over number fields, see http://www.cecm.sfu.ca/~bruin/ell.shar
  5. 5.
    5. Nils Bruin, The Diophantine equations x2 ± y4 = ±z6 and x2 + y8 = z3, Compositio Math. 118 (1999), 305–321.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    6. Nils Bruin, Visualising Sha[2] in abelian surfaces, Math. Comp. 73 (2004), 1459–1476 (electronic).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    7. Nils Bruin, Chabauty methods using elliptic curves, J. reine angew. Math. 562 (2003), 27–49.MATHMathSciNetGoogle Scholar
  8. 8.
    8. Nils Bruin, Transcript of computations, available from http://www.cecm.sfu._ca/~bruin/nn2, 2003.
  9. 9.
    9. Nils Bruin, E. Victor Flynn, Towers of 2-covers of hyperelliptic curves, Technical Report PIMS-01-12, PIMS, 2001. http://www.pims.math.ca/publications/#preprints
  10. 10.
    10. J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291.CrossRefMathSciNetGoogle Scholar
  11. 11.
    11. J. W. S. Cassels, Second descents for elliptic curves, J. reine angew. Math. 494 (1998), 101–127. Dedicated to Martin Kneser on the occasion of his 70th birthday.MATHMathSciNetGoogle Scholar
  12. 12.
    12. Claude Chabauty, Sur les points rationnels des variétés algébriques don't l'irrégularité est supérieure à la dimension, C. R. Acad. Sci. Paris 212 (1941), 1022–1024.MATHMathSciNetGoogle Scholar
  13. 13.
    13. J. E. Cremona, Reduction of binary cubic and quartic forms, LMS J. Comput. Math. 2 (1999), 64–94 (electronic).MATHMathSciNetGoogle Scholar
  14. 14.
    14. John E. Cremona, Barry Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9-1 (2000), 13–28.MathSciNetGoogle Scholar
  15. 15.
    15. Henri Darmon, Andrew Granville, On the equations zm = F(x, y) and Axp + Byq = Czr, Bull. London Math. Soc. 27-6 (1995) 513–543.CrossRefMathSciNetGoogle Scholar
  16. 16.
    16. Claus Fieker, p-Selmer groups of number fields, Private communication.Google Scholar
  17. 17.
    17. E. Victor Flynn, Joseph L.Wetherell, Finding rational points on bi-elliptic genus 2 curves, Manuscripta Math. 100-4 (1999), 519–533.CrossRefMathSciNetGoogle Scholar
  18. 18.
    18. E.V. Flynn, A fiexible method for applying Chabauty's theorem, Compositio Mathematica 105 (1997), 79–94.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    19. J. R. Merriman, S. Siksek, N. P. Smart, Explicit 4-descents on an elliptic curve, Acta Arith. 77-4 (1996), 385–404.MathSciNetGoogle Scholar
  20. 20.
    20. Bjorn Poonen, Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. reine angew. Math. 488 (1997), 141–188.MATHMathSciNetGoogle Scholar
  21. 21.
    21. Samir Siksek, Descent on curves of genus 1, PhD thesis, University of Exeter, 1995.Google Scholar
  22. 22.
    22. Joseph H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Berlin: Springer-Verlag, 1986.Google Scholar
  23. 23.
    23. Denis Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7–17 (electronic).MATHMathSciNetGoogle Scholar
  24. 24.
    24. Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98-3 (2001), 245–277.CrossRefMathSciNetGoogle Scholar
  25. 25.
    25. Michael Stoll, John E. Cremona, Minimal models for 2-coverings of elliptic curves, LMS J. Comput. Math. 5 (2002), 220–243 (electronic).MATHMathSciNetGoogle Scholar
  26. 26.
    26. Tom Womack, Four descent on elliptic curves over Q, PhD thesis, University of Nottingham, 2003.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Nils Bruin
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnaby BCCanada

Personalised recommendations