Applications of the class field theory of global fields

  • Claus Fieker
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 19)

Abstract

Class field theory of global fields provides a description of finite abelian extensions of number fields and of function fields of transcendence degree 1 over finite fields. After a brief review of the handling of both function and number fields in Magma, we give an introduction to computational class field theory focusing on applications: We show how to construct tables of small degree extensions and how to utilize the class field theory to find curves with many rational points.x

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Roland Auer, Ray class fields of global function fields with many rational places, PhD thesis, Oldenburg: Carl von Ossietzky Universität Oldenburg, Fachbereich Mathematik, 1999.Google Scholar
  2. 2.
    2. Eric Bach, Explicit bounds for primality testing and related problems, Math. Comput. 55-191 (1990), 355–380.Google Scholar
  3. 3.
    3. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265. See also the Magma home page at http://magma.maths.usyd.edu.au/magma/.MATHCrossRefGoogle Scholar
  4. 4.
    4. John Cannon, Wieb Bosma (eds), Handbook of Magma Functions, V2.11, Sydney, 2004. The Magma Group http://magma.maths.usyd.edu.au/.
  5. 5.
    5. Henri Cohen, Francisco Diaz y Diaz, Michel Olivier, Construction of tables of quartic number fields, pp. 257–268 in: Wieb Bosma (ed.), Algorithmic Number Theory, Proceedings 4th international symposium (ANTS-IV), Leiden, the Netherlands, July 2–7, 2000, Lect. Notes Comput. Sci. 1838, Berlin: Springer, 2000.CrossRefGoogle Scholar
  6. 6.
    6. Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, Berlin-Heidelberg-New York: Springer, 1993.Google Scholar
  7. 7.
    7. Henri Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics 193, Berlin-Heidelberg-New York: Springer, 2000.Google Scholar
  8. 8.
    8. Claus Fieker, Jürgen Klüners, Minimal discriminants for fields with small Frobenius groups as Galois groups, J. Number Theory, 99-2 (2003), 318–337.CrossRefGoogle Scholar
  9. 9.
    9. David Ford, Pascal Letard, Implementing the Round Four maximal order algorithm, J. Theo. Nombres Bordeaux, 6-1 (1994), 39–80.Google Scholar
  10. 10.
    10. David Ford, Michael E. Pohst, The totally real A6 extension of degree 6 with minimum discriminant, Exp. Math. 2-3 (1993), 231–232.Google Scholar
  11. 11.
    11. David Ford, Michael E. Pohst, Mario Daberkow, Nasser Haddad, The S5 extensions of degree 6 with minimum discriminant, Exp. Math. 7-2 (1998), 121–124.Google Scholar
  12. 12.
    12. Carsten Friedrichs, Berechnung von Maximalordnungen über Dedekindringen, Dissertation, Technische Universität Berlin, 2000. http://www.math.tu-berlin.de/~kant/publications/diss/diss_cf.ps.gz.
  13. 13.
    13. V. D. Goppa, Codes on algebraic curves, Dokl. Akad. Nauk SSSR 259(6) 1981, 1289–1290.Google Scholar
  14. 14.
    14. Florian Heß, Zur Klassengruppenberechnung in algebraischen Zahlkörpern, Diplomarbeit, Technische Universität Berlin, 1996. http://www.math.tu-berlin.de/~kant/publications/diplom/hess.ps.gz
  15. 15.
    15. Florian Heß, Zur Divisorenklassengruppenberechnung in globalen Funktionen-körpern, Dissertation, Technische Universität Berlin, 1999. http://www.math.tu-berlin.de/~kant/publications/diss/diss_FH.ps.gz
  16. 16.
    16. Florian Heß, Sebastian Pauli, Michael E. Pohst, Computing the multiplicative group of residue class rings, Math. Comp. 72-243 (2003), 1531–1548 (electronic).CrossRefGoogle Scholar
  17. 17.
    17. Serge Lang, Algebraic Number Theory, Graduate Texts in Mathematics 110 (2nd edition), New York: Springer, 1994.Google Scholar
  18. 18.
    18. Michel Olivier, Corps sextiques primitifs. (Primitive sextic fields). Ann. Inst. Fourier, 40-4 (1990), 757–767.Google Scholar
  19. 19.
    19. Sebastian Pauli, Efficient Enumeration of Extensions of Local Fields with Bounded Discriminant, PhD thesis, Concordia University, 2001. http://www.math.tu-berlin.de/~pauli/papers/phd.ps.gz
  20. 20.
    20. Michael E. Pohst, Hans Zassenhaus, Algorithmic Algebraic Number Theory, Encyclopaedia of Mathematics and its Applications, Cambridge: Cambridge University Press, 1989.Google Scholar
  21. 21.
    21. J.-P. Serre, Local Fields, New York: Springer, 1995.Google Scholar
  22. 22.
    22. Henning Stichtenoth, Algebraic Function Fields and Codes, Berlin: Springer-Verlag, 1993.MATHGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Claus Fieker
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia

Personalised recommendations