New Evolutionary Methodologies for Integrated Safety System Design and Maintenance Optimization

  • B. Galván
  • G. Winter
  • D. Greiner
  • D. Salazar
  • M. Méndez
Part of the Studies in Computational Intelligence book series (SCI, volume 39)

Keywords

Hydroxide Steam Recombination Iodine Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews JD (1994) Optimal safety system design using fault tree analysis. In Proc. Instn. Mech. Engrs. Vol. 208, pp. 123-131.Google Scholar
  2. 2.
    Andrews JD, Bartlett LM (1998) Efficient Basic Event Orderings for Binary Decision Diagrams, IEEE Proceedings Annual Reliability and Maintainability Symposium, pp. 61-68.Google Scholar
  3. 3.
    Andrews JD, Pattison RL (1997) Optimal Safety-system performance. In Pro-ceedings of the 1997 Reliability and Maintainability Symposium, Philadelphia, Pennsylvania, January, pp. 76-83.Google Scholar
  4. 4.
    Andrews JD, Pattison RL (1999) Genetic Algorithms in optimal safety system design, Proceedings Instn. Mech. Engrs., vol. 213, Part E, pp. 187-197.Google Scholar
  5. 5.
    Back T (1996) Evolutionary Algorithms in Theory and Practice. Oxford uni-versity Press, New York.Google Scholar
  6. 6.
    Back T, Naujoks B (1998) Innovative methodologies in evolution strategies. INGENET Project Report D 2.2, Center for Applied Systems Analysis, Informatik Centrum Dortmund, June.Google Scholar
  7. 7.
    Barros A, Berenguer C, Grall A (2003) Optimization of Replacement Times Using Imperfect Monitoring Information. IEEE Trans on Reliab, Vol. 52-4.Google Scholar
  8. 8.
    Bartlett LM, Andrews JD (2001) An ordering heuristic to develop the binary decision diagram based on structural importance. Reliab Engng & Syst Safety, Vol. 72, issue 1, 2001, pp. 31-38.CrossRefGoogle Scholar
  9. 9.
    Bouissou M (1996) An ordering Heuristic for building Binary Decisión Dia-grams from Fault Trees. Proceedings RAMS 96, Las Vegas, January.Google Scholar
  10. 10.
    Brezavscek A, Hudoklin A (2003) Joint Optimization of Block-Replacement and Periodic-Review Spare-Provisioning Policy. IEEE Trans on Reliab, Vol. 52, No. 1.Google Scholar
  11. 11.
    Bris R, Chatelet E, Yalaoui F (2003). New method to minimize the preventive maintenance cost of series-parallel systems. Reliab Engng and Syst Safety 82:247-255.CrossRefGoogle Scholar
  12. 12.
    Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams, ACM Computing Surveys 24(3):293-318CrossRefGoogle Scholar
  13. 13.
    Busacca PG, Marseguerra M, Zio E (2001) Multiobjective optimization by genetic algorithms: application to safety systems, Reliab Engng & Syst Safety, Vol. 72, issue 1, pp. 59-74CrossRefGoogle Scholar
  14. 14.
    Chen D, Trivedi KS (2005) Optimization for condition-base maintenance with semi-Markov decision process. Reliab Engng & Syst Safety Vol. 90:25-29.CrossRefGoogle Scholar
  15. 15.
    Chen H, Zhou J (1991) Reliability Optimization in Generalized Stochastic-Flow Networks. IEEE Trans on Reliab, 40-1.Google Scholar
  16. 16.
    Coello Coello CA, Van Veldhuizen D, Lamont G (2002) Evolutionary Algo- rithms for solving multi-objective problems. Kluwer Academic Publishers -GENA SeriesGoogle Scholar
  17. 17.
    Coit DW, Jin T, Wattanapongsakorn N (2004) System Optimization With Component Reliability Estimation Uncertainty: A Multi-Criteria Approach. IEEE Trans on Reliab, Vol. 53-3, September.Google Scholar
  18. 18.
    Coolen FPA, Dekker R (1995) Analysis of a 2-phase Model for Optimization of Condition-Monitoring Intervals. IEEE Trans on Reliab, 44-3.Google Scholar
  19. 19.
    Coudert O, Madre JC (1993) Fault Tree analysis: 1020 Prime Implicants and beyond, IEEE Proceedings Annual Reliability and Maintainability Symposium, pp. 240-245.Google Scholar
  20. 20.
    Cui L, Kuo W, Loh HT and Xie M (2004) Optimal Allocation of Minimal & Perfect Repairs Under Resource Constraints. IEEE Trans on Reliab, Vol. 53-2, June.Google Scholar
  21. 21.
    Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist multiob- jective genetic algorithm: NSGA-II”, IEEE Trans on Evol Comput 6 (2), pp. 182-197.CrossRefGoogle Scholar
  22. 22.
    Dhingra AK (1992) Optimal Apportionment of Reliability & Redundancy in Series Systems Under multiple Objectives. IEEE Trans on Reliab, Vol. 41, no. 4, December.Google Scholar
  23. 23.
    Dugan JB, Bavuso SJ, Boyd MA (1992). Dynamic Fault-Tree models for fault-tolerant computer systems, IEEE Trans on Reliab 41(3):363-377.MATHCrossRefGoogle Scholar
  24. 24.
    Dugan JB, Lyu MR (1994) Reliability and Sensitivity analysis of hardware and software fault tolerant systems. In Proceedings of the Fourth IFIP Work-ing Conference on Dependable Computing for Critical Applications, January.Google Scholar
  25. 25.
    Dugan JB, Venkataraman B, Gulati R (1997). A software package for the analysis of dynamics fault tree models, IEEE Proceedings Annual Reliability and Maintainability Symposium, pp. 64-70.Google Scholar
  26. 26.
    Elegbede AOC, Chu C, Adjallah KH, Yalaoui F (2003) Reliability Allocation Through Cost Minimization. IEEE Trans on Reliab, Vol. 52-4.Google Scholar
  27. 27.
    Fiori de Castro H, Cavalca KL (2005) Maintenance resources optimization applied to a manufacturing system. Reliab Engng & Syst Safety. In press.Google Scholar
  28. 28.
    Fry AJ (2003) Integrity-Based Self-Validation Test Scheduling”. IEEE Trans on Reliab, Vol. 52-2.Google Scholar
  29. 29.
    Galván BJ (2000) Evolución Flexible. Informe CEA-04-001. Centro de inves-tigación de Aplicaciones Numéricas en Ingeniería. CEANI. Universidad de Las Palmas de Gran Canaria. Islas Canarias, España.Google Scholar
  30. 30.
    Galván BJ (1999) Contributions to Fault Tree Quantitative Evaluation., PhD Thesis, Physics Dep., Las Palmas de Gran Canaria University (Canary Is-lands-Spain)(In Spanish).Google Scholar
  31. 31.
    Gen M, Cheng R (1997) Genetic Algorithms & Engineering Design. Wiley Interscience, John Wiley & Sons, USA.Google Scholar
  32. 32.
    Gersht A, Kheradpir S, Shulman A (1996). “Dynamic Bandwidth-Allocation and Path-Restoration in SONET Self-Healing Networks”. IEEE Trans on Re-liab, 45-2.Google Scholar
  33. 33.
    Goel HD, Grievink J, Herder PM, Weijnen MPC (2002) Integrating reliability optimization into chemical process synthesis. Reliab Engng & Syst Safety, 78:247-258.CrossRefGoogle Scholar
  34. 34.
    Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Ma-chine Learning. Reading, MA: Addison-Wesley.Google Scholar
  35. 35.
    González L, García D, Galván BJ (1995) Sobre el análisis computacional de funciones Booleanas estocásticas de muchas variables. EACA95-Actas del primer encuentro de Álgebra computacional y Aplicaciones – Santander (Spain), Sept, pp. 45-55.Google Scholar
  36. 36.
    González L, García D, Galván BJ (2004) An Intrinsic Order Criterion to Evaluate Large, Complex Fault Trees, IEEE Trans on Reliab, Vol 53 (3) Sep-tember, pp. 297-305Google Scholar
  37. 37.
    Greiner D, Galván B, Winter G (2003) Safety Systems Optimum Design using Multicriteria Evolutionary Algorithms. In: Evolutionary Multicriterion Opti-mization, Lecture Notes in Computer Science 2632 pp. 722-736. Springer Verlag.Google Scholar
  38. 38.
    Greiner D, Winter G, Galván B (2002) Multiobjective Optimization in Safety Systems: A Comparative between NSGA-II and SPEA2. In: Proceedings of the IV Congress on Reliability: Dependability. Spain.Google Scholar
  39. 39.
    Haasl DF (1965) Advanced concepts on Fault Tree Analysis. The Boeing company System Safety Symposium, USA.Google Scholar
  40. 40.
    Holland JH (1975) Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.Google Scholar
  41. 41.
    Kuo W, Prasad VR (2000) An Annotated of System-Reliability Optimization. IEEE Trans on Reliab, Vol. 49, No. 2, pp. 176-187.CrossRefGoogle Scholar
  42. 42.
    Lapa CMF, Pereira CMNA, Paes de Barros M (2005) A model for preventive maintenance planning by genetic algorithms based in cost and reliability. Re-liab Engng & Syst Safety. In press.Google Scholar
  43. 43.
    Lapa CMF, Pereira CMNA, Frutuoso e Melo PF (2003) Surveillance test pol-icy optimization through genetic algorithms using non-periodic intervention frequencies and considering seasonal constraints”. Reliab Engng & Syst Safety 81:103-109.CrossRefGoogle Scholar
  44. 44.
    Lee WS, Grosh DL, Tillman FA, Lie CH (1985) Fault Tree Analysis, Meth-ods and Applications - A review. IEEE Trans on Reliabi, R-34(3), pp. 194-203.CrossRefGoogle Scholar
  45. 45.
    Lhorente B, Lugtigheid D, Knights PF, Santana A (2004) A model for optimal armature maintenance in electric haul truck wheel motors: a case study. Re-liab Engng & Syst Safety 84:209-218.CrossRefGoogle Scholar
  46. 46.
    Liang YC, Smith AE (2004) An Ant Colony Optimization Algorithm for the redundancy Allocation Problem (RAP) IEEE Trans on Reliab, Vol. 53-3 Sep-tember.Google Scholar
  47. 47.
    Martorell S, Carlos S, Villanueva JF, Sánchez AI, Galván B, Salazar D, Čepin M (In Press) Special Issue: “Use of Multiple Objective Evolutionary Algo-rithms in Optimizing Surveillance Requirements”. Reliab Engng & Syst Safety.Google Scholar
  48. 48.
    Martorell S, Muñoz A, Serradell V (1996) Age-dependent models for evaluat-ing risks and costs of surveillance and maintenance of components. IEEE Trans on Reliab, Vol. 45, No. 3, pp. 433-442.CrossRefGoogle Scholar
  49. 49.
    Martorell S, Sánchez A, Carlos S, Serradell V (2002) Comparing effective-ness and efficiency in technical specifications and maintenance optimization. Reliab Engng Syst Safety 77:281-289.CrossRefGoogle Scholar
  50. 50.
    Martorell S, Sánchez A, Carlos S, Serradell V (2000) Constrained optimiza-tion of test intervals using steady-state genetic algorithm. Reliab Engng & Syst Safety, Vol. 67, 2000, pp. 215-232.CrossRefGoogle Scholar
  51. 51.
    Myerson RB (1999) “Nash Equilibrium and the History of Economic theory”. Journal of Economic Literature, 36:1067-1082.Google Scholar
  52. 52.
    Nourelfath M, Dutuit Y (2004) A combined approach to solve the redundancy optimization problem for multi-state systems under repair policies. Reliab En-gng & Syst Safety 86:205-213.CrossRefGoogle Scholar
  53. 53.
    NUREG (1975), Reactor Safety Study-An Assessment of Accident Risks in U.S.Commercial Nuclear Power Plants, WASH-1400, U.S. Nuclear Regulatory Commission NUREG-75/014, Washington, D.C.Google Scholar
  54. 54.
    Pattisson RL, Andrews JD (1999) Genetic algorithms in optimal safety system design. In Proc. Instn. Mech. Engrs. Vol. 213, Part E, pp. 187-197.CrossRefGoogle Scholar
  55. 55.
    Prasad VR, Kuo W (2000) Reliability Optimization of Coherent Systems. IEEE Trans on Reliab, 49-3.Google Scholar
  56. 56.
    Quagliarella D, Vicini A (1999) A genetic algorithm with adaptable parame-ters. IEEE Systems, Man and Cibernetics, pp. III-598-III-602.Google Scholar
  57. 57.
    Ravi V, Murty BSN, Reddy PJ (1997) Nonequilibrium Simulated Annealing-Algorithm Applied to reliability Optimization of Complex systems. IEEE Trans on Reliab, Vol. 46-2.Google Scholar
  58. 58.
    Rubinstein RY, Levitin G, Lisnianski A, Ben-Haim H (1997) Redundancy Optimization of static Series-Parallel Reliability Models Under Uncertainty. IEEE Trans on Reliab, Vol. 46, No. 4, December.Google Scholar
  59. 59.
    Samrout M, Yalaoui F, Chatelet E, Chebbo N (2005) New methods to mini-mize the preventive maintenance cost of series-parallel systems using ant col-ony optimization. Reliab Engng & Syst Safety 89:346-354.CrossRefGoogle Scholar
  60. 60.
    Schneeweiss WG (1989) Boolean Functions with Engineering Applications and Computer Programs. Springer-Verlag.Google Scholar
  61. 61.
    Sefrioui M, Periaux J, “Nash Genetic Algorithms: examples and applica-tions”, Proceedings of the 2000 Congress on Evolutionary Computation, CEC-2000, Vol. 1, pp. 509-516.Google Scholar
  62. 62.
    Soni S, Narasimhan S, LeBlanc LJ (2004) Telecommunication Access Net- work Design UIT Reliability Constraints. IEEE Trans on Reliab, Vol. 53-4.Google Scholar
  63. 63.
    Vesely WE, Goldberg FF, Roberts NH, Haals DF (1981) Fault Tree Hand-book. Systems and Reliability research office of Nuclear Regulatory Re-search, U.S. Nuclear Regulatory Commission, Washington D.C., January.Google Scholar
  64. 64.
    Winter G, Gonzalez B, Galvan B, Benitez E, “Numerical Simulation of Tran-sonic Flows by a Double Loop Flexible Evolution”, Parallel Computacional Fluid Dynamics 2005, Washington, U.S.A.Google Scholar
  65. 65.
    Wattanapongsakorn N, Levitan S (2004) Reliability Optimization Models for Embedded Systems With Multiple Applications. IEEE Trans on Reliab, Vol. 53-3, September.Google Scholar
  66. 66.
    Winter G, Galván B, Alonso S, González B, Jiménez JI, Greiner D (2005) A Flexible Evolutionary Agent: cooperation and Competition among real-coded evolutionary operators, Soft Computing Journal, Vol. 9 No. 4:299-323MATHCrossRefGoogle Scholar
  67. 67.
    Winter G, Galvan B, Alonso S and González B (2002) Evolving From Ge-netic Algorithms to Flexible Evolution Agents. In the Late-Breaking Papers Book of the Genetic and Evolutionary Computation Conference, Erik Cantú-Paz (Lawrence Livermore National Laboratory) Editor, New York. GECCO 2002, pp. 466-473.Google Scholar
  68. 68.
    Winter G, Galván B, Alonso S, Mendez M (2005) New Trends In Evolution-ary Optimization And Its Impact On Dependability Problems. Evolutionary and Deterministic Methods for Design, Optimization and Control with Appli-cations to Industrial and Societal Problems, EUROGEN 2005, R. Schilling, W.Haase, J. Periaux, H. Baier, G. Bugeda (Eds).Google Scholar
  69. 69.
    Yalaoui A, Chu C, Chatelet E, (2005) Reliability allocation problem in a se-ries-parallel system. Reliab Engng & Syst Safety 90:55-61.CrossRefGoogle Scholar
  70. 70.
    Zitzler E, Laumanns M, Thiele L “SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization”, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, (EUROGEN 2001), September 2001, Athens, Greece.Google Scholar
  71. 71.
    Ziztler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Swiss Federal Institute of Technology (ETH) Zu-rich, TIK-Schriftenreihe Nr. 30, Diss ETH No. 13398. Germany: Shaker Ver-lag, ISBN 3-8265-6831-1, December.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • B. Galván
  • G. Winter
  • D. Greiner
  • D. Salazar
  • M. Méndez

There are no affiliations available

Personalised recommendations