Advertisement

On Variational-like Inequalities with Generalized Monotone Mappings

  • Vasile Preda
  • Miruna Beldiman
  • Anton Bătătorescu
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 583)

Summary

We consider two new classes of generalized relaxed α-monotone and semimonotone functions and using the KKM technique we prove the existence of solutions for variational-like inequalities relative to these types of mappings in Banach spaces. Several examples and special cases are also considered.

Key words

Variational-like inequality generalized monotone mapping KKM Theorem coercivity semicontinuity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansari QH, Siddiqi AH, Yao JC (2000) Generalized vector variational-like inequalities and their scalarizations. In: Giannessi F (ed) Vector Variational Inequalities and Vector Equilibria. Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  2. 2.
    Ansari QH, Konnov IV, Yao JC (2002) Characterization of solutions for vector equilibrium problems. Journal of Optimization Theory and Applications 113: 435–447zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Chang SS, Lee BS, Chen YQ (1995) Variational inequalities for monotone operators in nonreflexive Banach spaces. Applied Mathematics Letters 8: 29–34zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen YQ (1999) On the semimonotone operator theory and applications. Journal of Mathematical Analysis and Applications 231: 177–192zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fang YP, Huang NJ (2003) Variational-like inequalities with generalized monotone mappings in Banach spaces. Journal of Optimization Theory and Applications 118: 327–337zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Giannessi F (ed) (2000) Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, HollandzbMATHGoogle Scholar
  7. 7.
    Giannessi F, Maugeri A (1995) Variational Inequalities and Network Equilibrium Problems. Plenum Publishing Corporation, New YorkzbMATHGoogle Scholar
  8. 8.
    Glowinski R, Lions JL, Tremolieres R (1981) Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam, HollandzbMATHGoogle Scholar
  9. 9.
    Goeleven D, Motreanu D (1996) Eigenvalue and dynamic problems for variational and hemivariational inequalities. Communications on Applied Nonlinear Analysis, 3: 1–21zbMATHMathSciNetGoogle Scholar
  10. 10.
    Hadjisavvas N, Schaible S (1996) Quasimonotone variational inequalities in Banach spaces. Journal of Optimization Theory and Applications 90: 95–111zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hartman GJ, Stampacchia G (1966) On some nonlinear elliptic differential functional equations. Acta Mathematica 115: 271–310zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kang MK, Huang NJ, Lee BS (2003) Generalized pseudo-monotone set-valued variational-like inequalities. Indian Journal of Mathematics 45: 251–264zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kassay G, Kolumban I (2000) Variational inequalities given by semi-pseudomonotone mappings. Nonlinear Analysis Forum, 5: 35–50zbMATHMathSciNetGoogle Scholar
  14. 14.
    Konnov IV, Yao JC (1997) On the generalized vector variational inequality problems. Journal of Mathematical Analysis and Applications 206: 42–58zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Konnov IV (2001) Combined relaxation methods for variational inequalities. Lecture notes in economics and mathematical systems, Vol. 495, Springer, BerlinGoogle Scholar
  16. 16.
    Konnov IV (1998) A combined relaxation method for variational inequalities with nonlinear constraints. Mathematical Programming 80: 239–252zbMATHMathSciNetGoogle Scholar
  17. 17.
    Konnov IV (2002) A class of combined relaxation methods for decomposable variational inequalities. Optimization 51: 109–125zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Ky Fan (1961) A generalization of Tychonoff’s fixed-point theorem, Mathematische Annalen, 142: 305–310MathSciNetCrossRefGoogle Scholar
  19. 19.
    Luc DT (1989) Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, Springer Verlag, New YorkGoogle Scholar
  20. 20.
    Neveu J (1964) Bases Mathematiques du Calcul des Probabilites. Masson, PariszbMATHGoogle Scholar
  21. 21.
    Reed M, Simon B (1972) Methods of Modern Mathematical Physics, I. Functional Analysis. Academic Press, New York and LondonGoogle Scholar
  22. 22.
    A.H. Siddiqi, Q.H. Ansari, K.R. Kazmi (1994) On nonlinear variational inequalities. Indian Journal on Pure and Applied Mathematics 25: 969–973MathSciNetGoogle Scholar
  23. 23.
    Schaible S (1995) Generalized monotonicity-concepts and uses. In: Giannessi F, Maugeri A (eds) Variational Inequalities and Network Equilibrium Problems, Plenum Publishing Corporation, New YorkGoogle Scholar
  24. 24.
    Schaible S (1998) Criteria for generalized monotonicity. In: Giannessi F et al. (eds) New Trends in Mathematical Programming, Kluwer Academic Publishers, DordrechtGoogle Scholar
  25. 25.
    Verma RU (1997) Nonlinear variational inequalities on convex subsets of Banach spaces. Applied Mathematics Letters 10: 25–27zbMATHCrossRefGoogle Scholar
  26. 26.
    Verma RU (1998) On monotone nonlinear variational inequalitiy problems. Comentationes Mathematicae Universitatis Carolinae, 39: 91–98zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vasile Preda
    • 1
  • Miruna Beldiman
    • 2
  • Anton Bătătorescu
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.University of BucharestBucharestRomania

Personalised recommendations