The Influence of Intermittency on Air-Water Gas Transfer Measurements

  • Bernd Jähne
  • Christopher Popp
  • Uwe Schimpf
  • Christoph S. Garbe
Part of the Environmental Science and Engineering book series (ESE)


This paper theoretically investigates the influence of intermittency on determining average transfer velocities using different measuring techniques. It is shown that all measuring techniques can significantly be biased by intermittency. Mass balance and eddy correlation measurements are only biased when the concentration difference between the air and the water is spatially or temporally inhomogeneous over the measurement interval. Mean transfer velocities calculated either from mean boundary layer thicknesses or from thermographic techniques, which compute the mean transfer velocity either from concentration differences of from time constants, are biased toward lower values. The effects can be large and a simple stochastic bimodal model is used to estimate the effect.


Boundary Layer Thickness Transfer Velocity Eddy Correlation Surface Renewal Thermographic Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Asher, W. E., A. T. Jessup, and M. A. Atmane. Oceanic application of the active controlled flux technique for measuring air-sea transfer velocities of heat and gases. J. Geophys. Res., 109:C08S12, doi:10.1029/2003JC001862, 2004.Google Scholar
  2. [2]
    Asher, W. E. and J. Pankow. The interaction of mechanically generated turbulence and interfacial films with a liquid phase controlled gas/liquid process. Tellus, 38B:305–318, 1986.Google Scholar
  3. [3]
    Atmane, M. A., W. E. Asher, and A. T. Jessup. On the use of the active infrared technique to infer heat and gas transfer velocities at the air-water free surface. J. Geophys. Res., 109:C08S14, doi:10.1029/2003JC001805, 2004.Google Scholar
  4. [4]
    Broecker, W. J., R. Ledwell, T. Takahashi, R. Weiss, L. Merlivat, L. Memery, T.-H. Peng, B. Jähne, and K. O. Münnich. Isotopic versus micrometeorologic ocean CO2 fluxes: a serious conflict. J. Geophys. Res., 91:10,517–10,527, 1986.CrossRefGoogle Scholar
  5. [5]
    Garbe, C. S., U. Schimpf, and B. Jähne. A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air-sea heat and gas exchange. J. Geophys. Res., 109:C08S15, doi:10.1029/2003JC001802, 2004.Google Scholar
  6. [6]
    Garbe, C. S., H. Spies, and B. Jähne. Estimation of Surface Flow and Net Heat Flux from Infrared Image Sequences. J. Mathematical Imaging and Vision, 19:159–174, 2003.CrossRefGoogle Scholar
  7. [7]
    Haußecker, H., S. Reinelt, and B. Jähne. Heat as a proxy tracer for gas exchange measurements in the field: principles and technical realization. In Jähne, B. and E. Monahan, eds., Air-Water Gas Transfer, Selected Papers, 3rd Intern. Symp. on Air-Water Gas Transfer, pp. 405–413. AEON, Hanau, 1995.Google Scholar
  8. [8]
    Haußecker, H., U. Schimpf, C. S. Garbe, and B. Jähne. Physics from IR image sequences: quantitative analysis of transport models and parameters of air-sea gas transfer. In Donelan, M. A., W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds., Gas Transfer at Water Surfaces, vol. 127 of Geophysical Monograph, pp. 103–108. American Geophysical Union, Washington, DC, 2001. invited paper.Google Scholar
  9. [9]
    Jähne, B., P. Libner, R. Fischer, T. Billen, and E. Plate. Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method. Tellus, 41B:177–195, 1989.CrossRefGoogle Scholar
  10. [10]
    Jessup, A. T., C. J. Zappa, and H. Yeh. Defining and quantifying microscale wave breaking with infrared imagery. J. Geophys. Res., 102: 23,145–54, 1997.CrossRefGoogle Scholar
  11. [11]
    Münsterer, T. and B. Jähne. LIF measurements of concentration pro-files in the aqueous mass boundary layer. Exp. Fluids, 25:190–196, 1998.CrossRefGoogle Scholar
  12. [12]
    Popp, C. Untersuchungen zum windinduzierten Wärmeaustausch durch die wasserseitige Grenzschicht an der Wasseroberfläche mittels aktiver Thermographie. Diss., Univ. Heidelberg, 2006.Google Scholar
  13. [13]
    Schimpf, U., C. Garbe, and B. Jähne. Investigation of transport processes across the sea surface microlayer by infrared imagery. J. Geophys. Res., 109:C08S13, doi:10.1029/2003JC00180, 2004.Google Scholar
  14. [14]
    Wolff, L. M. and T. J. Hanratty. Instantaneous concentration profiles of oxygen accompanying absorption in stratified flow. Exp. Fluids, 16:385–392, 1994.CrossRefGoogle Scholar
  15. [15]
    Zappa, C. J., W. E. Asher, A. T. Jessup, J. Klinke, and S. R. Long. Microbreaking and the enhancement of air-water transfer velocity. J. Geophys. Res., 109:C08S16, doi:10.1029/2003JC001897, 2004.Google Scholar
  16. [16]
    Zemmelink, H. J., J. W. H. Dacey, E. J. Hintsa, W. R. McGillis, W. W. C. Gieskes, W. Klaassen, H. W. de Groot, and H. J. W. de Baar. Fluxes and gas transfer rates of the biogenic trace gas DMS derived from atmospheric gradients. J. Geophys. Res., 109:C08S10, doi:10.1029/2003JC001795, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 2007

Authors and Affiliations

  • Bernd Jähne
    • 1
  • Christopher Popp
    • 1
  • Uwe Schimpf
    • 1
  • Christoph S. Garbe
    • 1
  1. 1.Institute for Environmental Physics and Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations