Advertisement

Cat Swarm Optimization

  • Shu-Chuan Chu
  • Pei-wei Tsai
  • Jeng-Shyang Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4099)

Abstract

In this paper, we present a new algorithm of swarm intelligence, namely, Cat Swarm Optimization (CSO). CSO is generated by observing the behaviors of cats, and composed of two sub-models, i.e., tracing mode and seeking mode, which model upon the behaviors of cats. Experimental results using six test functions demonstrate that CSO has much better performance than Particle Swarm Optimization (PSO).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg, D.E.: Genetic Algorithm in Search. In: Optimization and Machine Learning, Addison-Wesley, Reading (1989)Google Scholar
  2. 2.
    Pan, J.S., McInnes, F.R., Jack, M.A.: Application of Parallel Genetic Algorithm and Property of Multiple Global Optima to VQ Codevector Index Assignment. Electronics Letters 32(4), 296–297 (1996)CrossRefGoogle Scholar
  3. 3.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995), 1995Google Scholar
  4. 4.
    Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Congress on Evolutionary Computation, pp. 1945–1950 (1999)Google Scholar
  5. 5.
    Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S.: A Parallel Particle Swarm Optimization Algorithm with Communication Strategies. Journal of Information Science and Engineering 21(4), 809–818 (2005)Google Scholar
  6. 6.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. on Evolutionary Computation 26(1), 53–66 (1997)CrossRefGoogle Scholar
  7. 7.
    Chu, S.C., Roddick, J.F., Pan, J.S.: Ant colony system with communication strategies. Information Sciences 167, 63–76 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science, 671–680 (1983)Google Scholar
  9. 9.
    Huang, H.C., Pan, J.S., Lu, Z.M., Sun, S.H., Hang, H.M.: Vector quantization based on generic simulated annealing. Signal Processing 81(7), 1513–1523 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shu-Chuan Chu
    • 1
  • Pei-wei Tsai
    • 2
  • Jeng-Shyang Pan
    • 2
  1. 1.Department of Information ManagementCheng Shiu University 
  2. 2.Department of Electronic EngineeringNational Kaohsiung University of Applied Sciences 

Personalised recommendations