Sparse Kernel Ridge Regression Using Backward Deletion

  • Ling Wang
  • Liefeng Bo
  • Licheng Jiao
Conference paper

DOI: 10.1007/978-3-540-36668-3_40

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4099)
Cite this paper as:
Wang L., Bo L., Jiao L. (2006) Sparse Kernel Ridge Regression Using Backward Deletion. In: Yang Q., Webb G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science, vol 4099. Springer, Berlin, Heidelberg

Abstract

Based on the feature map principle, Sparse Kernel Ridge Regression (SKRR) model is proposed. SKRR obtains the sparseness by backward deletion feature selection procedure that recursively removes the feature with the smallest leave-one-out score until the stop criterion is satisfied. Besides good generalization performance, the most compelling property of SKRR is rather sparse, and moreover, the kernel function needs not to be positive definite. Experiments on synthetic and benchmark data sets validate the feasibility and validity of SKRR.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ling Wang
    • 1
  • Liefeng Bo
    • 1
  • Licheng Jiao
    • 1
  1. 1.Institute of Intelligent Information ProcessingXidian UniversityXi’anChina

Personalised recommendations