The Diversity of Bacteriocins in Gram-Positive Bacteria

  • Nicholas C. K. Heng
  • Philip A. Wescombe
  • Jeremy P. Burton
  • Ralph W. Jack
  • John R. Tagg


Lactic Acid Bacterium Bacteriocin Production Appl Environ Bacteriolytic Enzyme Lactic Acid Bacterium Bacteriocin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison GE, Fremaux C, Klaenhammer TR (1994) Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 76:2235–2241.PubMedGoogle Scholar
  2. Aranha C, Gupta S, Reddy KV (2004) Contraceptive efficacy of antimicrobial peptide nisin: in vitro and in vivo studies. Contraception 69:333–338.PubMedGoogle Scholar
  3. Beatson SA, Sloan GL, Simmonds RS (1998) Zoocin A immunity factor: a femA-like gene found in a group C streptococcus. FEMS Microbiol Lett 163:73–77.PubMedGoogle Scholar
  4. Ben-Shushan G, Zakin V, Gollop N (2003) Two different propionicins produced by Propionibacterium thoenii P-127. Peptides 24:1733–1740.PubMedGoogle Scholar
  5. Beukes M, Hastings JW (2001) Self-protection against cell wall hydrolysis in Streptococcus milleri NMSCC 061 and analysis of the millericin B operon. Appl Environ Microbiol 67:3888–3896.PubMedGoogle Scholar
  6. Beukes M, Bierbaum G, Sahl HG, Hastings JW (2000) Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl Environ Microbiol 66:23–28.PubMedGoogle Scholar
  7. Bibel DJ, Aly R, Bayles C, Strauss WG, Shinefield HR, Maibach HI (1983) Competitive adherence as a mechanism of bacterial interference. Can J Microbiol 29:700–703.PubMedGoogle Scholar
  8. Booth MC, Bogie CP, Sahl HG, Siezen RJ, Hatter KL, Gilmore MS (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184.PubMedGoogle Scholar
  9. Brede DA, Faye T, Johnsborg O, Ødegård I, Nes IF, Holo H (2004) Molecular and genetic characterization of propionicin F, a bacteriocin Propionibacterium freudenreichii. Appl Environ Microbiol 70:7303–7310.PubMedGoogle Scholar
  10. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364.PubMedGoogle Scholar
  11. Brotz H, Bierbaum G, Markus A, Molitor E, Sahl HG (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob Agents Chemother 39:714–719.PubMedGoogle Scholar
  12. Brotz H, Bierbaum G, Reynolds PE, Sahl HG (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 246:193–199.PubMedGoogle Scholar
  13. Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327.PubMedGoogle Scholar
  14. Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 45:832–838.Google Scholar
  15. Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684.PubMedGoogle Scholar
  16. Chen J, Stevenson DM, Weimer PJ (2004) Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl Environ Microbiol 70:3167–3170.PubMedGoogle Scholar
  17. Chikindas ML, Novak J, Driessen AJ, Konings WN, Schilling KM, Caufield PW (1995) Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob Agents Chemother 9:2656–2660.Google Scholar
  18. Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330.PubMedGoogle Scholar
  19. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994.PubMedGoogle Scholar
  20. Cintas LM, Casaus P, Herranz C, Havarstein LS, Holo H, Hernandez PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814.PubMedGoogle Scholar
  21. Coburn PS, Gilmore MS (2003) The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 5:661–669.PubMedGoogle Scholar
  22. Coburn PS, Hancock LE, Booth MC, Gilmore MS (1999) A novel means of self-protection, unrelated to toxin activation, confers immunity to the bactericidal effects of the Enterococcus faecalis cytolysin. Infect Immun 67:3339–3347.PubMedGoogle Scholar
  23. Coburn PS, Pillar CM, Jett BD, Haas W, Gilmore MS (2004) Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306:2270–2272.PubMedGoogle Scholar
  24. Cotter PD, Hill C, Ross RP (2005a) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Prot Pept Sci 6:61–75.Google Scholar
  25. Cotter PD, Hill C, Ross RP (2005b) Bacteriocins: developing innate immunity for food. Nature Rev Microbiol 3:777–788.Google Scholar
  26. Cuozzo SA, Sesma F, Palacios JM, de Ruiz Holgado AP, Raya RR (2000) Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lactobacillus casei CRL 705. FEMS Microbiol Lett 185:157–161.PubMedGoogle Scholar
  27. Day AM, Cove JH, Phillips-Jones MK (2003) Cytolysin gene expression in Enterococcus faecalis is regulated in response to aerobiosis conditions. Mol Gen Genomics 269:31–39.Google Scholar
  28. de Vos WM, Kuipers OP, van der Meer JR, Siezen RJ (1995) Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol 17:427–437.PubMedGoogle Scholar
  29. DeHart HP, Heath HE, Heath LS, LeBlanc PA, Sloan GL (1995) The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. Appl Environ Microbiol 61:1475–1479.PubMedGoogle Scholar
  30. Diaz M, Valdivia E, Martinez-Bueno M, Fernandez M, Soler-Gonzalez AS, Ramirez-Rodrigo H, Maqueda M (2003) Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl Environ Microbiol 69:1229–1236.PubMedGoogle Scholar
  31. Diep DB, Axelsson L, Grefsli C, Nes IF (2000) The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 146:2155–2160.PubMedGoogle Scholar
  32. Diep DB, Myhre R, Johnsborg O, Aakra A, Nes IF (2003) Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol Microbiol 47:483–494.PubMedGoogle Scholar
  33. Donvito B, Etienne J, Denoroy L, Greenland T, Benito Y, Vandenesch F (1997) Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect Immun 65:95–100.PubMedGoogle Scholar
  34. Ehlert K, Tschierske M, Mori C, Schroder W, Berger-Bachi B (2000) Site-specific serine incorporation by Lif and Epr into positions 3 and 5 of the staphylococcal peptidoglycan interpeptide bridge. J Bacteriol 182:2635–2638.PubMedGoogle Scholar
  35. Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281.PubMedGoogle Scholar
  36. Eijsink VG, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654.PubMedGoogle Scholar
  37. Faye T, Langsrud T, Nes IF, Holo H (2000) Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl Environ Microbiol 66:4230–4236.PubMedGoogle Scholar
  38. Faye T, Brede DA, Langsrud T, Nes IF, Holo H (2002) An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J Bacteriol 184:3649–3656.PubMedGoogle Scholar
  39. Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF, Nissen-Meyer J (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl Environ Microbiol 62:3313–3318.PubMedGoogle Scholar
  40. Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11:688–696.PubMedGoogle Scholar
  41. Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148:973–984.PubMedGoogle Scholar
  42. Fredericq P (1946) Sur la pluralité des récepteurs d’antibiose de E. coli. C R Soc Biol 140:1189–1190.Google Scholar
  43. Galvez A, Valdivia E, Maqueda M, Montoya E (1985) Production of bacteriocin-like substances by group D streptococci of human origin. Microbios 43(176S):223–232.PubMedGoogle Scholar
  44. Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84:577–592.PubMedGoogle Scholar
  45. Georgalaki MD, Van Den Berghe E, Kritikos D, Devreese B, Van Beeumen J, Kalantzopoulos G, De Vuyst L, Tsakalidou E (2002) Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Appl Environ Microbiol 68:5891–5903.PubMedGoogle Scholar
  46. Gilmore MS, Skaugen M, Nes I (1996) Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake. Antonie Van Leeuwenhoek 69:129–138.PubMedGoogle Scholar
  47. González C, Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M (2000) Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc Natl Acad Sci USA 97:11221–11226.PubMedGoogle Scholar
  48. Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. C R Soc Biol 93:1040–1042.Google Scholar
  49. Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jansch L, Hechard Y, Hastings JW, Knochel S (2002) High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361–2369.PubMedGoogle Scholar
  50. Gross E, Morell JL (1971) The structure of nisin. J Am Chem Soc 93:4634–4635.PubMedGoogle Scholar
  51. Guder A, Schmitter T, Wiedemann I, Sahl HG, Bierbaum G (2002) Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Appl Environ Microbiol 68:106–113.PubMedGoogle Scholar
  52. Haas W, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87.PubMedGoogle Scholar
  53. Hale JDF, Heng NCK, Jack RW, Tagg JR (2005a) Identification of nlmTE, the locus encoding the ABC transport system required for export of nonlantibiotic mutacins in Streptococcus mutans. J Bacteriol 187:5036–5039.PubMedGoogle Scholar
  54. Hale JDF, Ting Y-T, Jack RW, Tagg JR, Heng NCK (2005b) Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl Environ Microbiol 71:7613–7617.PubMedGoogle Scholar
  55. Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422.PubMedGoogle Scholar
  56. Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol 173:7491–7500.PubMedGoogle Scholar
  57. Håvarstein LS, Holo H, Nes IF (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology 140:2383–2389.PubMedGoogle Scholar
  58. Heath HE, Heath LS, Nitterauer JD, Rose KE, Sloan GL (1989) Plasmid-encoded lysostaphin endopeptidase resistance of Staphylococcus simulans biovar staphylolyticus. Biochem Biophys Res Commun 160:1106–1109.PubMedGoogle Scholar
  59. Heinrich P, Rosenstein R, Bohmer M, Sonner P, Gotz F (1987) The molecular organization of the lysostaphin gene and its sequences repeated in tandem. Mol Gen Genet 209:563–569.PubMedGoogle Scholar
  60. Heng NCK, Burtenshaw GA, Jack RW, Tagg JR (2004) Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid 52:225–229.PubMedGoogle Scholar
  61. Heng NCK, Ragland NL, Swe PM, Inglis MA, Baird HJ, Tagg JR, Jack RW (2006) Dysgalacticin: a novel, plasmid-encoded bacteriocin produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology 152:1991–2001.PubMedGoogle Scholar
  62. Hille M, Kies S, Gotz F, Peschel A (2001) Dual role of GdmH in producer immunity and secretion of the staphylococcal lantibiotics gallidermin and epidermin. Appl Environ Microbiol 67:1380–1383.PubMedGoogle Scholar
  63. Hindre T, Le Pennec JP, Haras D, Dufour A (2004) Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol Lett 231:291–298.PubMedGoogle Scholar
  64. Hyink O, Balakrishnan M, Tagg JR (2005) Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252:235–241.PubMedGoogle Scholar
  65. Hynes WL, Tagg JR (1986) Proteinase-related broad-spectrum inhibitory activity among group-A streptococci. J Med Microbiol 22:257–264.PubMedGoogle Scholar
  66. Jack RW, Tagg JR (1991) Isolation and partial structure of streptococcin A-FF22. In: Jung G, Sahl H-G (eds) Nisin and novel lantibiotics. ESCOM, Leiden, pp 171–179.Google Scholar
  67. Jack RW, Tagg JR (1992) Factors affecting production of the group A streptococcus bacteriocin SA-FF22. J Med Microbiol 36:132–138.PubMedGoogle Scholar
  68. Jack RW, Carne A, Metzger J, Stefanovic S, Sahl HG, Jung G, Tagg J (1994) Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur J Biochem 220:455–462.PubMedGoogle Scholar
  69. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200.PubMedGoogle Scholar
  70. Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167:439–446.PubMedGoogle Scholar
  71. Joerger MC, Klaenhammer TR (1990) Cloning, expression and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J Bacteriol 172:6339–6347.PubMedGoogle Scholar
  72. Jung G (1991) Lantibiotics: a survey. In: Jung G, Sahl H-G (eds) Nisin and novel lantibiotics. ESCOM, Leiden, pp 1–34.Google Scholar
  73. Jung G, Sahl H-G (1991) (eds) Nisin and novel lantibiotics. ESCOM, Leiden.Google Scholar
  74. Kalmokoff ML, Banerjee SK, Cyr T, Hefford MA, Gleeson T (2001) Identification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. Appl Environ Microbiol 67:4041–4047.PubMedGoogle Scholar
  75. Kalmokoff ML, Cyr TD, Hefford MA, Whitford MF, Teather RM (2003) Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrisolvens AR10: characterization of the gene and peptide. Can J Microbiol 49:763–773.PubMedGoogle Scholar
  76. Kanatani K, Oshimura M, Sano K (1995) Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus. Appl Environ Microbiol 61:1061–1067.PubMedGoogle Scholar
  77. Karaya K, Shimizu T, Taketo A (2001) New gene cluster for lantibiotic streptin possibly involved in streptolysin S formation. J Biochem (Tokyo) 129:769–775.Google Scholar
  78. Kawai Y, Saito T, Suzuki M, Itoh T (1998) Sequence analysis by cloning of the structural gene of gassericin A, a hydrophobic bacteriocin produced by Lactobacillus gasseri LA39. Biosci Biotechnol Biochem 62:887–892.PubMedGoogle Scholar
  79. Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, Tateno Y, Itoh T, Saito T (2004a) Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol 70:2906–2911.PubMedGoogle Scholar
  80. Kawai Y, Kemperman R, Kok J, Saito T (2004b) The circular bacteriocins gassericin A and circularin A. Curr Prot Pept Sci 5:393–398.Google Scholar
  81. Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J (2003a) Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Appl Environ Microbiol 69:5839–5848.PubMedGoogle Scholar
  82. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J (2003b) Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol 69:1589–1597.PubMedGoogle Scholar
  83. Kessler H, Steuernagel D, Gillessen D, Kamiyama T (1987) Complete sequence determination and localisation of one imino and three sulfide bridges of the nonadecapeptide Ro09–0198 by homonuclear 2D-NMR spectroscopy. The DQF-RELAYED_NOESY experiment. Helv Chim Acta 70:726–741.Google Scholar
  84. King BF, Biel ML, Wilkinson BJ (1980) Facile penetration of the Staphylococcus aureus capsule by lysostaphin. Infect Immun 29:892–896.PubMedGoogle Scholar
  85. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85.PubMedGoogle Scholar
  86. Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596.PubMedGoogle Scholar
  87. Koponen O, Takala TM, Saarela U, Qiao M, Saris PE (2004) Distribution of the NisI immunity protein and enhancement of nisin activity by the lipid-free NisI. FEMS Microbiol Lett 231:85–90.PubMedGoogle Scholar
  88. Kreth J, Merritt J, Shi W, Qi F (2005) Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404.PubMedGoogle Scholar
  89. Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653.PubMedGoogle Scholar
  90. Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270 45:27299–304.Google Scholar
  91. Lacks SA (2004) Transformation. In: Tuomanen EI, Mitchell TJ, Morrison DA, Spratt BG (eds) The pneumococcus. ASM Press, Washington, DC, pp 89–115.Google Scholar
  92. Lai AC, Tran S, Simmonds RS (2002) Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiol Lett 215:133–138.PubMedGoogle Scholar
  93. Leer RJ, van der Vossen JM, van Giezen M, van Noort JM, Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus Microbiology 141:1629–1635.PubMedGoogle Scholar
  94. Liang Q, Simmonds RS, Timkovich R (2004) NMR evidence for independent domain structures in zoocin A, an antibacterial exoenzyme. Biochem Biophys Res Commun 317:527–530.PubMedGoogle Scholar
  95. Lyon WJ, Glatz BA (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl Environ Microbiol 59:83–88.PubMedGoogle Scholar
  96. Maldonado A, Ruiz-Barba JL, Jimenez-Diaz R (2004) Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. J Bacteriol 186:1556–1564.PubMedGoogle Scholar
  97. Maqueda M, Gálvez A, Bueno MM, Sanchez-Barrena MJ, González C, Albert A, Rico M, Valdivia E (2004) Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr Prot Pept Sci 5:399–416.Google Scholar
  98. Marciset O, Jeronimus-Stratingh MC, Mollet B, Poolman B (1997) Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem 272:14277–14284.PubMedGoogle Scholar
  99. Marki F, Hanni E, Fredenhagen A, Oostrum J (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol 42:2027–2035.PubMedGoogle Scholar
  100. Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43:3049–3056.PubMedGoogle Scholar
  101. Martinez-Bueno M, Valdivia E, Galvez A, Coyette J, Maqueda M (1998) Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol Microbiol 27:347–358.PubMedGoogle Scholar
  102. Mathiesen G, Huehne K, Kroeckel L, Axelsson L, Eijsink VG (2005) Characterization of a new bacteriocin operon in sakacin P-producing Lactobacillus sakei, showing strong translational coupling between the bacteriocin and immunity genes. Appl Environ Microbiol 71:3565–3574.PubMedGoogle Scholar
  103. Mattick ATR, Hirsch A (1947) Further observations on an inhibitory substance (nisin) produced by group N streptococci. Lancet ii:5–7.Google Scholar
  104. McAuliffe O, Hill C, Ross RP (2000) Each peptide of the two-component lantibiotic lacticin 3147 requires a separate modification enzyme for activity. Microbiology 146:2147–2154.PubMedGoogle Scholar
  105. McAuliffe O, O’Keeffe T, Hill C, Ross RP (2001a) Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol Microbiol 39:982–993.PubMedGoogle Scholar
  106. McAuliffe O, Ross RP, Hill C (2001b) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308.PubMedGoogle Scholar
  107. Miescher S, Stierli MP, Teuber M, Meile L (2000) Propionicin SM1, a bacteriocin from Propionibacterium jensenii DF1: isolation and characterization of the protein and its gene. Syst Appl Microbiol 23:174–184.PubMedGoogle Scholar
  108. Miller KW, Schamber R, Osmanagaoglu O, Ray B (1998) Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl Environ Microbiol 64:1997–2005.PubMedGoogle Scholar
  109. Morgan SM, O’Connor PM, Cotter PD, Ross RP, Hill C (2005) Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother 49:2606–2611.PubMedGoogle Scholar
  110. Morrison DA (2002) Is anybody here? Cooperative bacterial gene regulation via peptide signals between Gram-positive bacteria. In: Hodgson DA, Thomas CM (eds) Signals, switches, regulons and cascades: control of bacterial gene expression. Cambridge University Press, Cambridge, pp 231–249.Google Scholar
  111. Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC (2000) MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44:24–29.PubMedGoogle Scholar
  112. Naruse N, Tenmyo O, Tomita K, Konishi M, Miyaki T, Kawaguchi H, Fukase K, Wakamiya T, Shiba T (1989) Lanthiopeptin, a new peptide antibiotic. Production, isolation and properties of lanthiopeptin. J Antibiot (Tokyo) 42:837–845.Google Scholar
  113. Netz DJA, Sahl H-G, Marcelino R, Nascimento JS, de Oliveira SS, Soares MB, Bastos MCF (2001) Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J Mol Biol 311:939–949.PubMedGoogle Scholar
  114. Netz DJA, Pohl R, Beck-Sickinger AG, Selmer T, Pierik AJ, Bastos MCF, Sahl H-G (2002) Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J Mol Biol 319:745–756.PubMedGoogle Scholar
  115. Neumann VC, Heath HE, LeBlanc PA, Sloan GL (1993) Extracellular proteolytic activation of bacteriolytic peptidoglycan hydrolases of Staphylococcus simulans biovar staphylolyticus. FEMS Microbiol Lett 110:205–211.PubMedGoogle Scholar
  116. Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell-wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69:2975–2984.PubMedGoogle Scholar
  117. Nissen-Meyer J, Holo H, Havarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692.PubMedGoogle Scholar
  118. Oldham ER, Daley MJ (1991) Lysostaphin: use of a recombinant bactericidal enzyme as a mastitis therapeutic. J Dairy Sci 74:4175–4182.PubMedCrossRefGoogle Scholar
  119. O’Rourke AD, Simmonds RS, Cook GM (2003) Catabolite repression of a bacteriocin-like inhibitory substance produced by Streptococcus equi subsp. zooepidemicus. In: Abstr Vol 103rd Annu Meet American Society for Microbiology, Washington, DC, Abstract H-006.Google Scholar
  120. Pag U, Heidrich C, Bierbaum G, Sahl HG (1999) Molecular analysis of expression of the lantibiotic pep5 immunity phenotype. Appl Environ Microbiol 65:591–598.PubMedGoogle Scholar
  121. Paik SH, Chakicherla A, Hansen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142.PubMedGoogle Scholar
  122. Palmer DE, Mierke DF, Pattaroni C, Goodman M, Wakamiya T, Fukase K, Kitazawa M, Fujita H, Shiba T (1989) Interactive NMR and computer simulation studies of lanthionine-ring structures. Biopolymers 28:397–408.PubMedGoogle Scholar
  123. Piard JC, Muriana PM, Desmazeaud MJ, Klaenhammer TR (1992) Purification and partial characterisation of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481. Appl Environ Microbiol 58:279–284.PubMedGoogle Scholar
  124. Qi F, Chen P, Caufield PW (1999) Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65:3880–3887.PubMedGoogle Scholar
  125. Qi F, Chen P, Caufield PW (2000) Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229.PubMedGoogle Scholar
  126. Qi F, Chen P, Caufield PW (2001) The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21.PubMedGoogle Scholar
  127. Qiao M, Immonen T, Koponen O, Saris PE (1995) The cellular location and effect on nisin immunity of the NisI protein from Lactococcus lactis N8 expressed in Escherichia coli and L. lactis. FEMS Microbiol Lett 131:75–80.PubMedGoogle Scholar
  128. Ramnath M, Beukes M, Tamura K, Hastings JW (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101.PubMedGoogle Scholar
  129. Rawlinson EL, Nes IF, Skaugen M (2002) LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor. Biochimie 84:559–567.PubMedGoogle Scholar
  130. Reddy KV, Aranha C, Gupta SM, Yedery RD (2004) Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies. Reproduction 128:117–126.PubMedGoogle Scholar
  131. Reis M, Eschbach-Bludau M, Iglesias-Wind MI, Kupke T, Sahl HG (1994) Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepI and localization and functional analysis of its gene product. Appl Environ Microbiol 60:2876–2883.PubMedGoogle Scholar
  132. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137.PubMedGoogle Scholar
  133. Rince A, Dufour A, Uguen P, Le Pennec JP, Haras D (1997) Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. Appl Environ Microbiol 63:4252–4260.PubMedGoogle Scholar
  134. Rink R, Kuipers A, de Boef E, Leenhouts KJ, Driessen AJ, Moll GN, Kuipers OP (2005) Lantibiotic structures as guidelines for the design of peptides that can be modified by lantibiotic enzymes. Biochemistry 44:8873–8882.PubMedGoogle Scholar
  135. Robinson JM, Hardman JK, Sloan GL (1979) Relationship between lysostaphin endopeptidase production and cell wall composition in Staphylococcus staphylolyticus. J Bacteriol 137:1158–1164.PubMedGoogle Scholar
  136. Rodriguez JM, Martinez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42:91–121.PubMedGoogle Scholar
  137. Rogers LA (1928) The inhibitory effect of Streptococcus lactis on Lactobacillus bulgaricus. J Bacteriol 16:321–325.PubMedGoogle Scholar
  138. Ross KF, Ronson CW, Tagg JR (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59:2014–2021.PubMedGoogle Scholar
  139. Ryan MP, Jack RW, Josten M, Sahl HG, Jung G, Ross RP, Hill C (1999) Extensive post-translational modification, including serine to D-alanine conversion, in the two-component lantibiotic, lacticin 3147. J Biol Chem 274:37544–37550.PubMedGoogle Scholar
  140. Sahl HG (1994) Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from gram-positive bacteria. Appl Environ Microbiol 60:752–755.PubMedGoogle Scholar
  141. Schindler CA, Schuhardt VT (1964) Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc Natl Acad Sci USA 51:414–421.PubMedGoogle Scholar
  142. Schlegel R, Slade HD (1973) Properties of a Streptococcus sanguis (group H) bacteriocin and its separation from the competence factor of transformation. J Bacteriol 115:655–661.PubMedGoogle Scholar
  143. Schneider TR, Karcher J, Pohl E, Lubini P, Sheldrick GM (2000) Ab initio structure determination of the lantibiotic mersacidin. Acta Crystallogr Sect D Biol Crystallogr 56:705–713.Google Scholar
  144. Schnell N, Entian KD, Schneider U, Gotz F, Zahner H, Kellner R, Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333:276–278.PubMedGoogle Scholar
  145. Shah A, Mond J, Walsh S (2004) Lysostaphin-coated catheters eradicate Staphylococccus aureus challenge and block surface colonization. Antimicrob Agents Chemother 48:2704–2707.PubMedGoogle Scholar
  146. Simmonds RS, Pearson L, Kennedy RC, Tagg JR (1996) Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl Environ Microbiol 62:4536–4541.PubMedGoogle Scholar
  147. Simmonds RS, Simpson WJ, Tagg JR (1997) Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189:255–261.PubMedGoogle Scholar
  148. Simpson WJ, Tagg JR (1983) M-type 57 group A streptococcus bacteriocin. Can J Microbiol 29:1445–1451.PubMedGoogle Scholar
  149. Simpson WJ, Tagg JR (1984) Survey of the plasmid content of group A streptococci. FEMS Microbiol Lett 23:195–199.Google Scholar
  150. Simpson WJ, Ragland NL, Ronson CW, Tagg JR (1995) A lantibiotic gene family widely distributed in Streptococcus salivarius and Streptococcus pyogenes. Dev Biol Stand 85:639–643.PubMedGoogle Scholar
  151. Stein T, Entian KD (2002) Maturation of the lantibiotic subtilin: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to monitor precursors and their proteolytic processing in crude bacterial cultures. Rapid Commun Mass Spectrom 16:103–110.PubMedGoogle Scholar
  152. Sugai M, Fujiwara T, Akiyama T, Ohara M, Komatsuzawa H, Inoue S, Suginaka H (1997a) Purification and molecular characterization of glycylglycine endopeptidase produced by Staphylococcus capitis EPK1. J Bacteriol 179:1193–1202.PubMedGoogle Scholar
  153. Sugai M, Fujiwara T, Ohta K, Komatsuzawa H, Ohara M, Suginaka H (1997b) epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J Bacteriol 179:4311–4318.PubMedGoogle Scholar
  154. Tagg JR (1992) Bacteriocins of Gram-positive bacteria: an opinion regarding their nature, nomenclature and numbers. In: James R, Lazdunski C, Pattus F (eds) Bacteriocins, microcins and lantibiotics. Springer, Berlin Heidelberg New York, NATO ASI Series vol H65, pp 33–35.Google Scholar
  155. Tagg JR, Bannister LV (1979) “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol 12:397–411.PubMedGoogle Scholar
  156. Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol 21:217–223.PubMedGoogle Scholar
  157. Tagg JR, Wong HK (1983) Inhibitor production by group G streptococci of human and of animal origin. J Med Microbiol 16:409–415.PubMedGoogle Scholar
  158. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756.PubMedGoogle Scholar
  159. Thumm G, Gotz F (1997) Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol 23:1251–1265.PubMedGoogle Scholar
  160. Tompkins GR, Peavey MA, Birchmeier KR, Tagg JR (1997) Bacteriocin production and sensitivity among coaggregating and noncoaggregating oral streptococci. Oral Microbiol Immunol 12:98–105.PubMedGoogle Scholar
  161. Upton M, Tagg JR, Wescombe P, Jenkinson HF (2001) Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183:3931–3938.PubMedGoogle Scholar
  162. Vadyvaloo V, Arous S, Gravesen A, Hechard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M (2004) Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150:3025–3033.PubMedGoogle Scholar
  163. van den Hooven HW, Lagerwerf FM, Heerma W, Haverkamp J, Piard JC, Hilbers CW, Siezen RJ, Kuipers OP, Rollema HS (1996) The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis: location of the thioether bridges. FEBS Lett 391:317–322.PubMedGoogle Scholar
  164. van der Merwe IR, Bauer R, Britz TJ, Dicks LM (2004) Characterization of thoeniicin 447, a bacteriocin isolated from Propionibacterium thoenii strain 447. Int J Food Microbiol 92:153–160.PubMedGoogle Scholar
  165. van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989.PubMedGoogle Scholar
  166. Vaughan A, Eijsink VG, van Sinderen D (2003) Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69:7194–7203.PubMedGoogle Scholar
  167. Vaughan A, O’Mahony J, Eijsink VG, O’Connell-Motherway M, van Sinderen D (2004) Transcriptional analysis of bacteriocin production by malt isolate Lactobacillus sakei 5. FEMS Microbiol Lett 235:377–384.PubMedGoogle Scholar
  168. Venema K, Kok J, Marugg JD, Toonen MY, Ledeboer AM, Venema G, Chikindas ML (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17:515–522.PubMedGoogle Scholar
  169. Wang X, Wilkinson BJ, Jayaswal RK (1991) Sequence analysis of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. Gene 102:105–109.PubMedGoogle Scholar
  170. Wescombe PA, Tagg JR (2003) Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69:2737–2747.PubMedGoogle Scholar
  171. Wescombe PA, Heng NCK, Jack RW, Tagg JR (2005) Bacteriocins associated with cytotoxicity for eukaryotic cells. In: Proft T (ed) Microbial toxins: molecular and cellular biology. Horizon Bioscience, Wymondham, pp 399–448.Google Scholar
  172. Wescombe PA, Burton JP, Cadieux PA, Klesse NA, Hyink O, Heng NCK, Chilcott CN, Reid G, Tagg JR (2006a) Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie van Leeuwenhoek (DOI: 10.2007/s10482–006-9081-y).Google Scholar
  173. Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR (2006b) Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72:1459–1466.PubMedGoogle Scholar
  174. Widdick DA, Dodd HM, Barraille P, White J, Stein TH, Chater KF, Gasson MJ, Bibb MJ (2003) Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proc Natl Acad Sci USA 100:4316–4321.PubMedGoogle Scholar
  175. Wirawan RE, Klesse NA, Jack RW, Tagg JR (2006) Molecular and genetic characterization of a novel nisin produced by Streptococcus uberis. Appl Environ Microbiol 72:1148–1156.PubMedGoogle Scholar
  176. Wong HK, Tagg JR, Hynes WL (1981) Bacteriocin-like inhibitors of group A streptococci produced by group F and group G streptococci. Proc Univ Otago Med School 59:105–106.Google Scholar
  177. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 47:3407–3414.PubMedGoogle Scholar
  178. Yonezawa H, Kuramitsu HK (2005) Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 49:541–548.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Nicholas C. K. Heng
    • 1
  • Philip A. Wescombe
    • 2
  • Jeremy P. Burton
    • 3
  • Ralph W. Jack
    • 4
  • John R. Tagg
    • 5
  1. 1.Department of Microbiology and ImmunologyOtago School of Medical Sciences, University of OtagoDunedinNew Zealand
  2. 2.BLIS Technologies Ltd.DunedinNew Zealand
  3. 3.BLIS Technologies Ltd.DunedinNew Zealand
  4. 4.Department of Microbiology and ImmunologyOtago School of Medical Sciences, University of OtagoDunedinNew Zealand
  5. 5.Department of Microbiology and ImmunologyOtago School of Medical Sciences, University of OtagoDunedinNew Zealand

Personalised recommendations