Taylor-Hood elements in 3D

  • Christian Wieners
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 12)


Taylor-Hood elements in 3D yield a stable finite element discretization for saddle point problems on meshes consisting of hexahedra, prisms, pyramids, and tetrahedra. Therefore, they can be used for adaptive computations on locally refined hexahedral meshes with a conforming closure by pyramidal elements. In this paper we present a suitable construction of conforming pyramidal shape functions, and we establish a corresponding inf-sup condition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert, and C. Wieners. UG — a flexible software toolbox for solving partial differential equations. Computing and Visualization in Science, 1: 27–40, 1997.MATHCrossRefGoogle Scholar
  2. 2.
    F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer, 1991.Google Scholar
  3. 3.
    P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North Holland, 1978.Google Scholar
  4. 4.
    P. Knabner and G. Summ. The invertibility of the isoparametric mapping for pyramidal and prismatic elements. Numer. Math., 88: 661–681, 2001.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    S. Lang. Parallele Numerische Simulation instationärer Probleme mit adaptiven Methoden auf unstrukturierten Gittern. PhD thesis, Universität Stuttgart, 2001.Google Scholar
  6. 6.
    R. Verfürth. Error estimates for a mixed finite element approximation of the Stokes equation. RADIO Anal. Numer., 18: 175 182, 1984.Google Scholar
  7. 7.
    C. Wieners, M. Ammann, S. Diebels, and W. Ehlers. Parallel 3-d simulations for porous media models in soil mechanics. Comput. Mech., 29: 75 87, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christian Wieners
    • 1
  1. 1.Institut für Angewandte MathematikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations