Biosensors for Pharmaceuticals and Emerging Contaminants Based on Novel Micro and Nanotechnology Approaches

  • Javier Adrián
  • Fátima Fernández
  • Alejandro Muriano
  • Raquel Obregon
  • Javier Ramón-Azcon
  • Nuria Tort
  • M.-Pilar Marco
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 5J)

The investigation of new sensing principles and technologies for the detection of molecular binding events has created great expectations on numerous major industrial sectors, such as healthcare, food, water and agriculture. Combining many of these advances with the potential of the immunochemical systems has allowed developing novel biosensors that provide interesting advantages against the traditional strategies for analysis, such as the possibility of multianalysis, development of field analytical methods and fabrication of easy end-user devices. Specifically, many efforts have been lately invested to control residues of pharmaceuticals in food and environmental samples, as an indication of the impact of the human activity in the media. Human and veterinary drugs, such as antibiotics, hormones, analgesics, cytostatics or β-blockers, show a high potential risk of negative effects in the environment and public health. Thus, there is a great need for low-cost and highly efficient tools for quick, reliable, and accurate detection of these contaminating bioactive agents. In particular, the scope of the present chapter is addressed to provide an overview of the potential of novel micro(nano)technology approaches to develop biosensors useful for the analysis of emerging pollutants.


Amperometric biosensor Antibody Antibiotics Biosensor Evanescent wave Hormones Impedimetric biosensor Microcantilevers Nanobiotechnology Pesticides Piezoelectric crystal Plasmon resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siow KS et al (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization — A review. Plasma Process Polym 3(6–7):392–418CrossRefGoogle Scholar
  2. 2.
    Kandimalla VB, Tripathi VS, Ju HX (2006) Immobilization of biomolecules in sol-gels: Biological and analytical applications. Crit Rev Anal Chem 36(2):73–106CrossRefGoogle Scholar
  3. 3.
    Meyer-Plath AA et al (2003) Current trends in biomaterial surface functionalization-nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 71(3 Suppl):391–406CrossRefGoogle Scholar
  4. 4.
    Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 14(5):443–456CrossRefGoogle Scholar
  5. 5.
    Xia K et al (2005) Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. J Environ Qual 34(1):91–104CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Mozaz S, de Alda MJL, Barcelo D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386(4):1025–1041CrossRefGoogle Scholar
  7. 7.
    Keren Barel-Cohen LSS, Shemesh M, Wenzel A, Mueller J, Kronfeld-Schor N (2006) Monitoring of natural and synthetic hormone in a polluted river. J Environ Manage 78:16–23CrossRefGoogle Scholar
  8. 8.
    Nozaki O (2001) Steroid analysis for medical diagnosis. J Chromatogr A 935(1–2):267–278CrossRefGoogle Scholar
  9. 9.
    Ying G-G, Kookana RS, Ru Y-J (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28(6):545–551CrossRefGoogle Scholar
  10. 10.
    IARC (1985) I.A.f.r.o.c., Polynuclear aromatic compounds: bituminous, coal tars and derived products, shale oils and soots. IARC monographs on the evaluation of the carcinogenic risks of chemicals to humans 35:4Google Scholar
  11. 11.
    Wegener HC (2003) Antibiotics in animal feed and their role in resistance development. Curr Opin Microbiol 6(5):439–445CrossRefGoogle Scholar
  12. 12.
    Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103:174–178CrossRefGoogle Scholar
  13. 13.
    Pumera M et al (2007) Electrochemical nanobiosensors. Sens Actuators B Chem 123(2):1195–1205CrossRefGoogle Scholar
  14. 14.
    Rivas GA et al (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307CrossRefGoogle Scholar
  15. 15.
    Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53(19):5848–5866CrossRefGoogle Scholar
  16. 16.
    Li X-M, Yang XY, Zhang S-S (2008) Electrochemical enzyme immunoassay using model labels. Trends Anal Chem 27(6):543–553CrossRefGoogle Scholar
  17. 17.
    Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19(19–20):2015–2028CrossRefGoogle Scholar
  18. 18.
    Rose A et al (2002) GDH biosensor based off-line capillary immunoassay for alkylphenols and their ethoxylates. Biosensors Bioelectron 17(11–12):1033–1043CrossRefGoogle Scholar
  19. 19.
    Lu H et al (2006) Screening of boldenone and methylboldenone in bovine urine using disposable electrochemical immunosensors. Steroids 71(9):760–767CrossRefGoogle Scholar
  20. 20.
    Conneely G et al (2007) Development of an immunosensor for the detection of testosterone in bovine urine. Anal Chim Acta 583(1):153–160CrossRefGoogle Scholar
  21. 21.
    Conneely G et al (2007) Electrochemical immunosensors for the detection of 19-nortestoster-one and methyltestosterone in bovine urine. Sens Actuators B Chem 121(1):103–112CrossRefGoogle Scholar
  22. 22.
    Carralero V et al (2007) Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer. Anal Chim Acta 596(1):86–91CrossRefGoogle Scholar
  23. 23.
    Zacco E et al (2007) Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens Bioelectron 22(9–10):2184–2191CrossRefGoogle Scholar
  24. 24.
    Font H et al (2008) Immunochemical assays for direct sulfonamide antibiotic detection in milk and hair samples using antibody derivatized magnetic nanoparticles. J Agric Food Chem 56(3):736–743CrossRefGoogle Scholar
  25. 25.
    Zacco E, Pividori MI, Alegret S (2006) Electrochemical magnetoimmunosensing strategy for the detection of pesticide residues. Anal Chem 78(6):1780–1788CrossRefGoogle Scholar
  26. 26.
    Centi S et al (2005) A disposable immunomagnetic electrochemical sensor based on function-alised magnetic beads and carbon-based screen-printed electrodes (SPCEs) for the detection of polychlorinated biphenyls (PCBs). Analytica Chimica Acta 538(1–2):205–212CrossRefGoogle Scholar
  27. 27.
    Centi S, Laschi S, Mascini M (2007) Improvement of analytical performances of a disposable electrochemical immunosensor by using magnetic beads. Talanta 73(2):394–399CrossRefGoogle Scholar
  28. 28.
    Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947CrossRefGoogle Scholar
  29. 29.
    Guan JG, Miao YQ, Zhang QJ (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226Google Scholar
  30. 30.
    Ma KS et al (2006) DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy. Sens Actuators B 114(1):58–64CrossRefGoogle Scholar
  31. 31.
    Bart M et al (2005) On the response of a label-free interferon-gamma immunosensor utilizing electrochemical impedance spectroscopy. Biosens Bioelectron 21(1):49–59CrossRefGoogle Scholar
  32. 32.
    Moreno-Hagelsieb L et al (2007) Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens Bioelectron 22(9–10):2199–2207CrossRefGoogle Scholar
  33. 33.
    Laschi S, Mascini M (2006) Planar electrochemical sensors for biomedical applications. Med Eng Phys 28(10):934–943CrossRefGoogle Scholar
  34. 34.
    Navratilova I, Skladal P (2004) The immunosensors for measurement of 2,4-dichlorophe-noxyacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry 62(1):11–18CrossRefGoogle Scholar
  35. 35.
    Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanalysis 13(3):173–180CrossRefGoogle Scholar
  36. 36.
    Ramón-Azcón J et al (2008) An impedimetric immunosensor based on interdigitated micro-electrodes (ID[μ]E) for the determination of atrazine residues in food samples. Biosens Bioelectron 23(9): 1367–1373CrossRefGoogle Scholar
  37. 37.
    Bratov A et al (2008) Three-dimensional interdigitated electrode array as a transducer for label-free biosensors. Biosens Bioelectron 24(4):729–735CrossRefGoogle Scholar
  38. 38.
    Bratov A et al (2008) Characterisation of the interdigitated electrode array with tantalum sili-cide electrodes separated by insulating barriers. Electrochem Commum 10(10):1621–1624CrossRefGoogle Scholar
  39. 39.
    Leung A, Shankar PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sens Actuators B Chem 125(2):688–703CrossRefGoogle Scholar
  40. 40.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical Chemical Sensors. Chem Rev 108(2)400–422CrossRefGoogle Scholar
  41. 41.
    Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461CrossRefGoogle Scholar
  42. 42.
    Carrascosa LG et al (2006) Nanomechanical biosensors: a new sensing tool. Trends Anal Chem 25(3): 196–206CrossRefGoogle Scholar
  43. 43.
    Bally M et al (2006) Optical microarray biosensing techniques. Surf Interf Anal 38(11):1442–1458CrossRefGoogle Scholar
  44. 44.
    Vaseashta A, Irudayaraj J (2005) Nanostructured and nanoscale devices and sensors. J Optoelectron Adv Mater 7(1):35–42Google Scholar
  45. 45.
    Gonzalez-Martinez MA, Puchades R, Maquieira A (2007) Optical immunosensors for environmental monitoring: How far have we come? Anal Bioanal Chem 387(1):205–218CrossRefGoogle Scholar
  46. 46.
    Mauriz E et al (2006) Determination of environmental organic pollutants with a portable optical immunosensor. Talanta 69(2):359–364CrossRefGoogle Scholar
  47. 47.
    Tschmelak J, Proll G, Gauglitz G (2005) Optical biosensor for pharmaceuticals, antibiotics, hormones, endocrine disrupting chemicals and pesticides in water: Assay optimization process for estrone as example. Talanta 65(2):313–323CrossRefGoogle Scholar
  48. 48.
    Kappel ND, Proll F, Gauglitz G (2007) Development of a TIRF-based biosensor for sensitive detection of progesterone in bovine milk. Biosens Bioelectron 22(9–10):2295–2300CrossRefGoogle Scholar
  49. 49.
    Tschmelak J et al (2006) Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements. Talanta 69(2):343–350CrossRefGoogle Scholar
  50. 50.
    Tschmelak J et al (2005) Automated water analyser computer supported system (AWACSS): Part II: Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system. Biosens Bioelectron 20(8):1509–1519CrossRefGoogle Scholar
  51. 51.
    Tschmelak J et al (2005) Automated water analyser computer supported system (AWACSS) Part I: Project objectives, basic technology, immunoassay development, software design and networking. Biosens Bioelectron 20(8): 1499–1508CrossRefGoogle Scholar
  52. 52.
    Tschmelak J, Proll G, Gauglitz G (2004) Verification of performance with the automated direct optical TIRF immunosensor (River analyser) in single and multi-analyte assays with real water samples. Biosens Bioelectron Microarrays Biodefense Environ Appl 20(4):743–752Google Scholar
  53. 53.
    Rodriguez-Mozaz S et al (2004) Simultaneous multi-analyte determination of estrone, isopro-turon and atrazine in natural waters by the RIver ANAlyser (RIANA), an optical immunosensor. Biosens Bioelectron 19(7):633–640CrossRefGoogle Scholar
  54. 54.
    Szekacs A et al (2003) Development of a non-labeled immunosensor for the herbicide triflura-lin via optical waveguide lightmode spectroscopic detection. Anal Chim Acta 487(1):31–42CrossRefGoogle Scholar
  55. 55.
    Grego S, McDaniel JR, Stoner BR (2008) Wavelength interrogation of grating-based optical biosensors in the input coupler configuration. Sens Actuators B Chem 131(2):347–355CrossRefGoogle Scholar
  56. 56.
    Kim N, Park IS, Kim WY (2007) Salmonella detection with a direct-binding optical grating coupler immunosensor. Sens Actuators B Chem 121(2):606–615CrossRefGoogle Scholar
  57. 57.
    Hsu SH, Huang YT (2005) Design and analysis of Mach-Zehnder interferometer sensors based on dual strip antiresonant reflecting optical waveguide structures. Optics Lett 30(21): 2897–2899CrossRefGoogle Scholar
  58. 58.
    Hsu SH, Huang YT (2005) A novel Mach-Zehnder interferometer based on dual-ARROW structures for sensing applications. J Lightwave Technol 23(12):4200–4206CrossRefGoogle Scholar
  59. 59.
    Kinrot N (2004) Analysis of bulk material sensing using a periodically segmented waveguide Mach-Zehnder interferometer for biosensing. J Lightwave Technol 22(10):2296–2301CrossRefGoogle Scholar
  60. 60.
    Prieto F et al (2003) Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications. Sens Actuators B Chem 92(1–2):151–158CrossRefGoogle Scholar
  61. 61.
    Cottier K et al (2003) Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips. Sens Actuators B Chem 91(1–3):241–251CrossRefGoogle Scholar
  62. 62.
    Kunz RE, Cottier K (2006) Optimizing integrated optical chips for label-free (bio-) chemical sensing. Anal Bioanal Chem 384(1): 180–190CrossRefGoogle Scholar
  63. 63.
    Cottier K, Kunz RE, Herzig HP (2004) Efficient and practical modeling of finite waveguide grating couplers. Jpn J Appl Phys Part 1 Reg Pap Short Notes Rev Pap 43(8B):5742–5746Google Scholar
  64. 64.
    Adrian J et al (2009) Generation of broad specificity antibodies for sulfonamide antibiotics and development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of milk samples. J Agric Food Chem 57(2):385–394CrossRefGoogle Scholar
  65. 65.
    Adrian J et al (2009) Waveguide interrogated optical immunoSensor (WIOS) for detection of sulfonamide antibiotics in milk. Biosens Bioelectron, submittedGoogle Scholar
  66. 66.
    Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B Chem 121(1): 158–177CrossRefGoogle Scholar
  67. 67.
    Zhang W-W et al (2007) Analysis of 17[β]-Estadiol from sewage in coastal marine environment by surface plasmon resonance technique. Chem Res Chin Univ 23(4):404–407CrossRefGoogle Scholar
  68. 68.
    Mauriz E et al (2007) Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens Bioelectron 22(7):1410–1418CrossRefGoogle Scholar
  69. 69.
    Mauriz E et al (2006) Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens Bioelectron 21(11):2129–2136Google Scholar
  70. 70.
    Farre M et al (2007) Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Anal Bioanal Chem 388(1):207–214CrossRefGoogle Scholar
  71. 71.
    Matsumoto K et al (2005) A surface plasmon resonance-based immunosensor for sensitive detection of bisphenol A. J Facul Agric Kyushu Univ 50(2):625–634Google Scholar
  72. 72.
    Marchesini GR et al (2006) Biosensor recognition of thyroid-disrupting chemicals using transport proteins. Anal Chem 78(4):1107–1114CrossRefGoogle Scholar
  73. 73.
    Gustavsson E et al (2004) Determination of B-lactams in milk using a surface plasmon resonance-based biosensor. J Agric Food Chem 52(10):2791–2796CrossRefGoogle Scholar
  74. 74.
    Gaudin V, Fontaine J, Maris P (2001) Screening of penicillin residues in milk by a surface plasmon resonance-based biosensor assay: comparison of chemical and enzymatic sample pre-treatment. Anal Chim Acta 436(2):191–198CrossRefGoogle Scholar
  75. 75.
    Kreuzer M et al (2008) Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal Bioanal Chem 391:1813–1820CrossRefGoogle Scholar
  76. 76.
    Kreuzer MP et al (2006) Quantitative detection of doping substances by a localised surface plasmon sensor. Biosens Bioelectron 21(7):1345–1349CrossRefGoogle Scholar
  77. 77.
    Raiteri R et al (2001) Micromechanical cantilever-based biosensors. Sens Actuators B Chem 79(2–3):115–126CrossRefGoogle Scholar
  78. 78.
    Fortina P et al (2005) Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 23(4):168–173CrossRefGoogle Scholar
  79. 79.
    Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108(2):522–542CrossRefGoogle Scholar
  80. 80.
    Ji HF et al (2008) Microcantilever biosensors based on conformational change of proteins. Analyst 133(4):434–443CrossRefGoogle Scholar
  81. 81.
    O'Sullivan CK, Vaughan R, Guilbault GG (1999) Piezoelectric immunosensors — theory and applications. Anal Lett 32(12):2353–2377CrossRefGoogle Scholar
  82. 82.
    Bunde RL, Jarvi EJ, Rosentreter JJ (1998) Piezoelectric quartz crystal biosensors. Talanta 46(6):1223–1236CrossRefGoogle Scholar
  83. 83.
    Liu M, Li QX, Rechnitz GA (1999) Flow injection immunosensing of polycyclic aromatic hydrocarbons with a quartz crystal microbalance. Anal Chim Acta 387(1):29–38CrossRefGoogle Scholar
  84. 84.
    Zhou XC, Cao L (2001) High sensitivity microgravimetric biosensor for qualitative and quantitative diagnostic detection of polychlorinated dibenzo-p-dioxins. The Analyst 126(1):71–78CrossRefGoogle Scholar
  85. 85.
    Park IS et al (2004) Development of a direct-binding chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers. Biosens Bioelectron 19(7):667–674CrossRefGoogle Scholar
  86. 86.
    Pribyl J, Hepel M, Skladal P (2006) Piezoelectric immunosensors for polychlorinated biphe-nyls operating in aqueous and organic phases. Sens Actuators B Chem (Special Issue — In honour of Professor Karl Cammann) 113(2):900–910CrossRefGoogle Scholar
  87. 87.
    Rahman MA et al (2007) An impedimetric immunosensor for the label-free detection of bisphenol A. Biosens Bioelectron 22(11):2464–2470CrossRefGoogle Scholar
  88. 88.
    Dumont V et al (2006) A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florefenicol, florefenicol amine and chloramphenicol residues in shrimps. Analytica Chimica Acta 567(2):179–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Javier Adrián
    • 1
  • Fátima Fernández
    • 1
  • Alejandro Muriano
    • 1
  • Raquel Obregon
    • 1
  • Javier Ramón-Azcon
    • 1
  • Nuria Tort
    • 1
  • M.-Pilar Marco
    • 1
  1. 1.Applied Molecular Receptors Group (AMRg)IQAC-CSIC, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)BarcelonaSpain

Personalised recommendations