Atomistic Simulations of Dislocation — Crack Interaction

  • Erik Bitzek
  • Peter Gumbsch
Conference paper


The interaction of dislocations with a static mode I crack is studied by large scale molecular dynamics simulations. The model consists of a blunted [001](110) crack in nickel, to which after relaxation at K < K Ic the displacement field of a dislocation is added. The response of the system is monitored during its evolution in the micro-canonical ensemble. The three dimensional nature of the problem requires the simulation of many millions of atoms. The great demands on the computational resources and data storage can only be met by high performance computing platforms and by the development of appropriate simulation methods. The simulations allowed to identify different characteristic processes during the interaction of the impinging dislocation with the crack. In particular, stimulated dislocation emission and cross slip processes are observed to be important for the development of a plastic zone.


Crack Front High Performance Computing Atomistic Simulation Cross Slip Dislocation Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scandian, C., Azzouzi, H., Maloufi, N., Michot, G., George, A.: Dislocation nucleation and multiplication at crack tips in silicon. Phys. Status Solidi A 171 (1999) 67–82CrossRefGoogle Scholar
  2. 2.
    Gally, B.J., Argon, A.S.: Brittle-to-ductile transitions in the fracture of silicon single crystals by dynamic crack arrest. Philos. Mag. A 81 (2001) 699–740CrossRefGoogle Scholar
  3. 3.
    Gumbsch, P., Riedle, J., Hartmaier, A., Fischmeister, H.F.: Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282 (1998) 1293–1295CrossRefGoogle Scholar
  4. 4.
    Gumbsch, P.: Brittle fracture and the breaking of atomic bond. In: Materials Science for the 21st Century. Volume A. JSMS, The Society of Materials Science, Japan (2001) 50–58Google Scholar
  5. 5.
    Gumbsch, P., Zhou, S., Holian, L.: Molecular dynamics investigation of dynamic crack stability. Phys. Rev. B 55(6) (1997) 3445–3455CrossRefGoogle Scholar
  6. 6.
    Scandian, C.: Conditions d’émission et de multiplication des dislocations à l’extrémité d’une fissure. Application au cas du silicium. PhD thesis, Institut National Polytechnique de Lorraine (2000)Google Scholar
  7. 7.
    Thomson, R.: Physics of fracture. In Ehrenreich, H., Turnbull, D., eds.: Solid State Physics. Volume 39., New York, Academic Press (1986) 1–129Google Scholar
  8. 8.
    Mishin, Y.: Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Metall. 52 (2004) 1451–1467Google Scholar
  9. 9.
    IMD: the ITAP Molecular Dynamics Program. ( Scholar
  10. 10.
    Roth, J., et al.: IMD — a massively parallel MD package for classical simulations in condensed matter. In Krause, E., Jäger, W., eds.: High Performance Comput. in Sci. and Eng.’ 99, Berlin, Springer (2000) 72–81Google Scholar
  11. 11.
    Rudhart, C., Rösch, F., Gähler, F., Roth, J., Trebin, H.R.: Crack propagation in icosahedral model quasicrystals. In Krause, E., Jäger, W., Resch, M., eds.: High Performance Computing in Science and Engineering 2003, Heidelberg, Springer (2004) 107–116Google Scholar
  12. 12.
    Gähler, F., Kohler, C., Roth, J., Trebin, H.R.: Computation of strain distributions in quantum dot nanostructures by means of atomistic simulations. In Krause, E., Jäger, W., eds.: High Performance Computing in Science and Engineering 2002, Heidelberg, Springer (2002) 3–14Google Scholar
  13. 13.
    Bitzek, E., Gähler, F., Hahn, J., Kohler, C., Krdzalic, G., Roth, J., Rudhart, C., Schaaf, G., Stadler, J., Trebin, H.R.: Recent developments in IMD: Interactions for covalent and metallic systems. In Krause, E., Jäger, W., eds.: High Performance Computing in Science and Engineering 2000, Springer, Heidelberg (2001) 37–47Google Scholar
  14. 14.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, Cambridge (1997)Google Scholar
  15. 15.
    Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Fire: Structural relaxation made simple. (to be published)Google Scholar
  16. 16.
    Li, J.: Atomeye: an efficient atomistic configuration viewer. Modelling Simul. Mater. Sci. Eng. 11 (2003) 173–177zbMATHCrossRefGoogle Scholar
  17. 17.
    Hartley, C.S., Mishin, Y.: Characterization and visualization of the lattice misfit associated with dislocation cores. Acta Metall. 53 (2005) 1313–1321Google Scholar
  18. 18.
    Zimmerman, J.A., Kelchner, C.L., Klein, P.A., Hamilton, J.C., Foiles, S.M.: Surface step effects on nanoindentation. Phys. Rev. Lett. 87(16) (2001) (165507-1)–(165507-4)CrossRefGoogle Scholar
  19. 19.
    Bitzek, E., Gumbsch, P.: Dynamics aspects of dislocation motion: atomistic simulations. Mater. Sci. Eng. A 400–401 (2005) 40–44Google Scholar
  20. 20.
    J.D. Honeycutt, H.C. Andersen: Molecular-dynamics study of melting and freezing of small lennard-jones clusters. J. Phys. Chem. 91 (1987) 4950–4963CrossRefGoogle Scholar
  21. 21.
    Brandl, C.: Untersuchungen von Versetzungen im Rissspannungsfeld. Diplomarbeit, Universität Karlsruhe (TH) (2006)Google Scholar
  22. 22.
    Bitzek, E., Gumbsch, P.: Atomistic simulation of dislocation-crack interaction. (in preparation)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Erik Bitzek
    • 1
  • Peter Gumbsch
    • 1
    • 2
  1. 1.Institut für Zuverlässigkeit von Bauteilen und Systemen (izbs)Universität Karlsruhe (TH)KarlsruheGermany
  2. 2.Fraunhofer-Institut für Werkstoffmechanik IWMFreiburgGermany

Personalised recommendations