Drift and Selection in Evolving Interacting Systems

  • Tomoko Ohta
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

There are various levels of interacting networks, within a protein or nucleic acid molecule, among proteins and nucleic acids, and genetic regulatory networks. At all these levels, interacting systems are dynamically evolving and repeated appearance of modular structures is noted. These modular structures repeatedly appear at different levels from proteins to genetic regulatory networks. Evolution of primary structure of proteins and nucleic acids depends on all these systems. For the evolution of such interacting systems, both drift and selection play important roles. Therefore, the near neutrality holds. The nearly neutral theory argues that slightly deleterious mutant substitutions disturb such systems mildly and occur by drift. Compensatory mutant substitutions are expected to follow. Drift and selection often become inseparable, such that formation and maintenance of networks depends on the interaction of drift and selection. By considering the effects of drift and selection on evolution of genetic regulatory elements that determine gene expression, the nearly neutral theory may be extended to morphological evolution, because organismal development is mainly controlled by regulation of gene expression.


Amino Acid Change Molecular Clock Neutral Theory Mutant Substitution Genetic Regulatory Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, J. Mol. Evol. 57, S103 (2003)CrossRefGoogle Scholar
  2. 2.
    M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983)CrossRefGoogle Scholar
  3. 3.
    N. Takahata, Genetics 116, 169 (1987)Google Scholar
  4. 4.
    R.E. Dickerson, J. Mol. Evol. 1, 26 (1971)CrossRefGoogle Scholar
  5. 5.
    H.B. Fraser, A.E. Hirsh, L.M. Steinmetz, C. Scharfe, M.W. Feldman, Science 296,750(2002)CrossRefADSGoogle Scholar
  6. 6.
    S.B. Carroll, J.K. Grenier, S.D. Weatherbee, From DNA to Diversity, Molecular Genetics and the Evolution of Animal Design (Blackwell Science, Massachusetts, 2001)Google Scholar
  7. 7.
    M.Z. Ludwig, C. Bergman, N.H. Patel, M. Kreitman, Nature 403, 564 (2000)CrossRefADSGoogle Scholar
  8. 8.
    E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabasi, Science 297,1551(2002)CrossRefADSGoogle Scholar
  9. 9.
    S. Wuchty, Z.N. Oltvai, A.-L. Barabasi, Nat. Genet. 35, 176 (2003)CrossRefGoogle Scholar
  10. 10.
    G. Schlosser, G.P. Wagner, Modularity in Development and Evolution (University of Chicago Press, Chicago, 2004)Google Scholar
  11. 11.
    E.H. Davidson, Genomic Regulatory Systems (Academic Press, San Diego, CA, 2001)Google Scholar
  12. 12.
    Z.N. Oltvai, A.-L. Barabasi, Science 298, 763 (2002)CrossRefGoogle Scholar
  13. 13.
    E. Zuckerkandl, L. Pauling, in Evolving Genes and Proteins, ed. by V. Bryson, H.J. Vogel (Academic, New York, 1965) pp. 97-166Google Scholar
  14. 14.
    M. Kimura, Nature 217, 624 (1968)CrossRefADSGoogle Scholar
  15. 15.
    J.B.S. Haldane, J. Genet. 55, 511 (1957)CrossRefGoogle Scholar
  16. 16.
    J.L. King, T.H. Jukes, Science 164, 788 (1969)CrossRefADSGoogle Scholar
  17. 17.
    M. Kimura, Proc. Nat. Acad. Sci. USA 63, 1181 (1969)CrossRefADSGoogle Scholar
  18. 18.
    R.C. Lewontin, The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974)Google Scholar
  19. 19.
    T. Ohta, M. Kimura, J. Mol. Evol. 1, 18 (1971)CrossRefGoogle Scholar
  20. 20.
    T. Ohta, Nature 246, 96 (1973)CrossRefADSGoogle Scholar
  21. 21.
    M. Akam, Cell 57, 347 (1989)CrossRefGoogle Scholar
  22. 22.
    T. Ohta, Genetics 134, 1271 (1993)Google Scholar
  23. 23.
    B. Tiplody, M. Goodman, J. Mol. Evol. 9, 343 (1977)CrossRefGoogle Scholar
  24. 24.
    M. Lynch, A. Force, Genetics 154, 459 (2000)Google Scholar
  25. 25.
    W.-H. Li, in Population Genetics and Molecular Evolution, ed. by T. Ohta, K. Aoki (Japan Scientific Society, Tokyo, 1985) pp. 333-352Google Scholar
  26. 26.
    T. Ohta, Genetics 138, 1331 (1994)Google Scholar
  27. 27.
    T. Ohta, J. Mol. Evol. 1, 305 (1972)CrossRefGoogle Scholar
  28. 28.
    T. Ohta, Annu. Rev. Ecol. Syst. 23, 263 (1992)CrossRefGoogle Scholar
  29. 29.
    T. Ohta, J. Mol. Evol. 41, 115 (1995)Google Scholar
  30. 30.
    Rat Genome Sequencing Project Consortium, Nature 428, 493 (2004)Google Scholar
  31. 31.
    G. Bernardi, Structural and Evolutionary Genomics, Natural Selection in Genome Evolution (Elsevier, Amsterdam, 2004)Google Scholar
  32. 32.
    F.G. Jorgensen, A. Hobolth, H. Hornshoj, C. Bendixen, M. Fredholm, M.H. Schierup, BMC Biol. 3, 2 (2005)CrossRefGoogle Scholar
  33. 33.
    J. Lu, C.-I. Wu, Proc. Natl. Acad. Sci. USA 102, 4063 (2005)CrossRefADSGoogle Scholar
  34. 34.
    Z. Gu, L. David, D. Petrov, T. Jones, R.W. Davis, L.M. Steinmetz, Proc. Natl. Acad. Sci. USA 102, 1092 (2005)CrossRefADSGoogle Scholar
  35. 35.
    P.D. Keightley, M.J. Lercher, A. Eyre-Walker, PLOS Biol. 3(2), e42 (2005)CrossRefGoogle Scholar
  36. 36.
    A.L. Hughes, Genetics 169, 533 (2005)CrossRefGoogle Scholar
  37. 37.
    J.H. Gillespie, The Causes of Molecular Evolution (Oxford University Press, Oxford, 1991)Google Scholar
  38. 38.
    M. Kimura, Genetics 47, 713 (1962)Google Scholar
  39. 39.
    C.D. Bustamante, R. Nielsen, S.A. Sawyer, K.M. Olsen, M.D. Purugganan, L.D. Hartl, Nature 416, 531 (2002)CrossRefADSGoogle Scholar
  40. 40.
    J.C. Fay, G.J. Wyckoff, C.-I. Wu, Nature 415, 1024 (2002)CrossRefADSGoogle Scholar
  41. 41.
    N.G.C. Smith, A. Eyre-Walker, Nature 415, 1022 (2002)CrossRefADSGoogle Scholar
  42. 42.
    R. Sanjuan, A. Moya, S.F. Elena, Proc. Natl. Acad. Sci. USA 101, 8396 (2004)CrossRefADSGoogle Scholar
  43. 43.
    R. Nielsen, Z. Yang, Mol. Biol. Evol. 20, 1231 (2003)CrossRefGoogle Scholar
  44. 44.
    G. Piganeau, A. Eyre-Walker, Proc. Nat. Acad. Sci. USA 100, 10335 (2003)CrossRefADSGoogle Scholar
  45. 45.
    J.H. McDonald, M. Kreitman, Nature 351, 652 (1991)CrossRefADSGoogle Scholar
  46. 46.
    T. Ohta, H. Tachida, Genetics 126, 219 (1990)Google Scholar
  47. 47.
    H. Tachida, Genetics 128, 183 (1991)Google Scholar
  48. 48.
    T. Ohta, Theor. Pop. Biol. 10, 254 (1976)CrossRefGoogle Scholar
  49. 49.
    J.W. Thatcher, J.M. Shaw, W.J. Dickinson, Proc. Nat. Acad. Sci. USA 95, 253 (1998)CrossRefADSGoogle Scholar
  50. 50.
    S.K. Remold, R.E. Lenski, Nat. Genet. 36, 423 (2004)CrossRefGoogle Scholar
  51. 51.
    H. Innan, Y. Kim, Proc. Nat. Acad. Sci. USA 101, 10667 (2004)CrossRefADSGoogle Scholar
  52. 52.
    T. Ohta, Proc. Nat. Acad. Sci. USA 99, 16134 (2002)CrossRefADSGoogle Scholar
  53. 53.
    M. Lynch, J.S. Cornery, Science 302, 1401 (2003)CrossRefADSGoogle Scholar
  54. 54.
    M.W. Hahn, J.E. Stajich, G.A. Wray, Mol. Biol. Evol. 20, 901 (2003)CrossRefGoogle Scholar
  55. 55.
    G.A. Wray, M.W. Hahn, E. Abounheif, J.P. Balhoff, M. Pizer, M.W. Rockman, L.A. Romono, Mol. Biol. Evol. 20, 1377 (2003)CrossRefGoogle Scholar
  56. 56.
    M.V. Rockman, G.A. Wray, Mol. Biol. Evol. 19, 1991 (2002)Google Scholar
  57. 57.
    A.S. Wilkins, The Evolution of Developmental Pathways (Sinauer Associates, Sunderland, MA, 2001)Google Scholar
  58. 58.
    S.L. Rutherford, S. Lindquist, Nature 396, 336 (1998)CrossRefADSGoogle Scholar
  59. 59.
    P. Schuster, in Evolutionary Dynamics, ed. by J.P. Crutchfield, P. Schuster (Oxford University Press, Oxford, 2003) pp. 163-215Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tomoko Ohta
    • 1
  1. 1.Department of Population GeneticsNational Institute of GeneticsMishimaJapan

Personalised recommendations