Clustering XML Documents Using Self-organizing Maps for Structures

  • M. Hagenbuchner
  • A. Sperduti
  • A. C. Tsoi
  • F. Trentini
  • F. Scarselli
  • M. Gori
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3977)

Abstract

Self-Organizing Maps capable of encoding structured information will be used for the clustering of XML documents. Documents formatted in XML are appropriately represented as graph data structures. It will be shown that the Self-Organizing Maps can be trained in an unsupervised fashion to group XML structured data into clusters, and that this task is scaled in linear time with increasing size of the corpus. It will also be shown that some simple prior knowledge of the data structures is beneficial to the efficient grouping of the XML documents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing of structured data. IEEE Transactions on Neural Networks 14(3), 491–505 (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Hagenbuchner, M., Sperduti, A., Tsoi, A.: Contextual processing of graphs using self-organizing maps. In: European symposium on Artificial Neural Networks, Poster track, Bruges, Belgium, April 27 - 29 (2005)Google Scholar
  3. 3.
    Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: Contextual self-organizing maps for structured domains. In: Relational Machine Learning, pp. 46–55 (2005)Google Scholar
  4. 4.
    Hagenbuchner, M., Tsoi, A.C.: A supervised self-organizing map for structures. In: International Joint Conference on Neural Networks, Budapest, Hungary, July 25-29, vol. 3, pp. 1923–1928 (2004)Google Scholar
  5. 5.
    Hagenbuchner, M., Tsoi, A.C.: A supervised training algorithm for self-organizing maps for structures. Artificial Neural Networks in Pattern Recognition, Special Issue Pattern Recognition Letters 26(12), 1874–1884 (2006)Google Scholar
  6. 6.
    Kohonen, T.: Self-Organisation and Associative Memory, 3rd edn. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Hagenbuchner
    • 2
  • A. Sperduti
    • 3
  • A. C. Tsoi
    • 4
  • F. Trentini
    • 1
  • F. Scarselli
    • 1
  • M. Gori
    • 1
  1. 1.University of SienaSienaItaly
  2. 2.University of WollongongWollongongAustralia
  3. 3.University of PadovaPadovaItaly
  4. 4.Monash UniversityMelbourneAustralia

Personalised recommendations