Data and Text Mining with Hierarchical Clustering Ants

  • Hanene Azzag
  • Christiane Guinot
  • Gilles Venturini
Part of the Studies in Computational Intelligence book series (SCI, volume 34)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A. (2001) On semi-automated web taxonomy construction. In: Proceedings of the Fourth International Workshop on the Web and Databases (WebDB), Santa BarbaraGoogle Scholar
  2. 2.
    Sanderson, M., Croft, W.B. (1999) Deriving concept hierarchies from text. In: Research and Development in Information Retrieval 206-213Google Scholar
  3. 3.
    McCallum, A.K., Nigam, K., Rennie, J., Seymore, K. (2000) Automating the construction of internet portals with machine learning. Information Retrieval 3: 127-163CrossRefGoogle Scholar
  4. 4.
    Goss, S., Deneubourg, J.L. (1991) Harvesting by a group of robots. In F.Varela, P.Bourgine, eds. Proceedings of the First European Conference on Artificial Life, Paris, France, Elsevier Publishing. 195-204Google Scholar
  5. 5.
    Lumer, E., Faieta, B. (1994) Diversity and adaptation in populations of clustering ants. In Cliff, D., Husbands, P., Meyer, J. W. S., eds.: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, MIT Press, Cambridge, Massachusetts. 501-508Google Scholar
  6. 6.
    Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L. (1990) The dynamics of collective sorting: robot-like ant and ant-like robots. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior. 356-365Google Scholar
  7. 7.
    Kuntz, P., Layzell, P., Snyers, D. (1997) A colony of ant-like agents for partitioning in vlsi technology. In Husbands, P., Harvey, I., eds.: Proceedings of the Fourth European Conference on Artificial Life. 417-424Google Scholar
  8. 8.
    Kuntz, P., Snyers, D., Layzell, P.J. (1998) A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. J. Heuristics 5 327-351CrossRefGoogle Scholar
  9. 9.
    Abraham, A., Ramos, V. (2003) Web usage mining using artificial ant colony clustering and linear genetic programming. In: The Congress on Evolutionary Computation, Canberra, Australia, IEEE-Press. 1384-1391CrossRefGoogle Scholar
  10. 10.
    Handl, J., Knowles, J., Dorigo, M. (2003) On the performance of ant-based clustering. 204-213Google Scholar
  11. 11.
    N. Labroche, C. Guinot (2004) Fast unsupervised clustering with artificial ants. In: Proceedings of the Parallel Problem Solving from Nature (PPSN VIII), Birmingham, England. 1143-1152Google Scholar
  12. 12.
    Anderson, C., Theraulaz, G., Deneubourg, J. (2002) Self-assemblages in insect societies. Insectes Sociaux 49 99-110CrossRefGoogle Scholar
  13. 13.
    Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.L. (2001) The dynamics of chain formation in oecophylla longinoda. Journal of Insect Behavior 14 679-696CrossRefGoogle Scholar
  14. 14.
    Theraulaz, G., Bonabeau, E., Sauwens, C., Deneubourg, J.L., Lioni, A., Libert, F., Passera, L., Sol é , R.V. (2001) Model of droplet formation and dynamics in the argentine ant (linepithema humile mayr). Bulletin of Mathematical BiologyGoogle Scholar
  15. 15.
    Colorni, A., Dorigo, M., Maniezzo, V. (1991) Distributed optimization by ant colonies. In F.Varela, P.Bourgine, eds.: Proceedings of the First European Conference on Artificial Life, Paris, France, Elsevier Publishing. 134-142Google Scholar
  16. 16.
    Roux, O., Fonlupt, C. (2000) Ant programming: Or how to use ants for automatic programming. From Ant Colonies to Artificial Ants: 2nd International Workshop on Ant Colony OptimizationGoogle Scholar
  17. 17.
    Bianchi, L., Gambardella, L.M., Dorigo, M. (2002) An ant colony optimization approach to the probabilistic traveling salesman problem. In: Proceedings of PPSN-VII, Seventh International Conference on Parallel Problem Solving from Nature. Lecture Notes in Computer Science, Springer Verlag, Berlin, GermanyGoogle Scholar
  18. 18.
    Ando, S., Iba, H. (2002) Ant algorithm for construction of evolutionary tree. In Langdon, W.B., ed.: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, Morgan Kaufmann Publishers. 131Google Scholar
  19. 19.
    Murata, S., Kurokawa, H., Kokaji, S. (1994). In: IEEE International Conference on Robotics and Automation. 441-448Google Scholar
  20. 20.
    Pamecha, A., Ebert-Uphoff, I., Chirikjian, G. (1997) Useful metrics for modular robot motion planningGoogle Scholar
  21. 21.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S. (2002) M-tran: Self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics 431-441Google Scholar
  22. 22.
    Jorgensen, M.W., Ostergaard, E.H., Lund, H.H. (2004) Modular atron: Modules for a self-reconfigurable robot. In: IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). 2068-2073Google Scholar
  23. 23.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M. (2004) Swarm-bot: A new distributed robotic concept. Auton. Robots 17 193-221CrossRefGoogle Scholar
  24. 24.
    Azzag, H., Guinot, C., Oliver, A., Venturini, G. (2005) A hierarchical ant based clustering algorithm and its use in three real-world applications. In Wout Dullaert, Marc Sevaux, K.S., Springael, J., eds.: European Journal of Operational Research (EJOR). Special Issue on Applications of Metaheuristics.Google Scholar
  25. 25.
    Eiben, A.E., Hinterding, R., Michalewicz, Z. (1999) Parameter control in evolutionary algorithms. IEEE Trans. on Evolutionary Computation 3 124-141CrossRefGoogle Scholar
  26. 26.
    Blake, C., Merz, C. (1998) UCI repository of machine learning databasesGoogle Scholar
  27. 27.
    Guinot, C., Malvy, D.J.M., Morizot, F., Tenenhaus, M., Latreille, J., Lopez, S., Tschachler, E., Dubertret, L. (2003) Classification of healthy human facial skin. Textbook of Cosmetic Dermatology Third editionGoogle Scholar
  28. 28.
    Fowlkes, E.B., Mallows, C.L. (1983) A method for comparing two hierarchical clusterings. J. American Statistical Associationn 78 553-569MATHCrossRefGoogle Scholar
  29. 29.
    Jain, A., Dubes, R. (1988) Algorithms for Clustering Data. Prentice Hall Advanced Reference SeriesGoogle Scholar
  30. 30.
    Monmarch é , N. (2000) Algorithme de fourmis artificielles : applications à la classification et à l’optimisation. Th èse de doctorat, Universit é de ToursGoogle Scholar
  31. 31.
    Labroche, N. (2003) Mod élisation du syst ème de reconnaissance chimique des fourmis pour le probl ème de la classification non-supervis ée : application à la mesure d’audience sur Internet. Th èse de doctorat, Laboratoire d’Informatique, Universit é de ToursGoogle Scholar
  32. 32.
    Han, E.H., Boley, D., Gini, M., Gross, R., Hastings, K., Karypis, G., Kumar, V., Mobasher, B., Moore, J. (1998) Webace: a web agent for document categorization and exploration. In: AGENTS ’98: Proceedings of the second international conference on Autonomous agents, New York, NY, USA, ACM Press (1998) 408-415CrossRefGoogle Scholar
  33. 33.
    Filo, D., Yang, J. (1997) Yahoo!Google Scholar
  34. 34.
    Base de WebKb webkb/.
  35. 35.
    Salton, G., Buckley, C. (1988) Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24 513-523CrossRefGoogle Scholar
  36. 36.
    Zipf, G.K. (1949) Human behaviour and the principle of least effort. Addison-Wesley, Cambridge, MassachusettsGoogle Scholar
  37. 37.
    Salton, G., McGill, M.J. (1983) Introduction to Modern Information Retrieval. McGraw- Hill, Inc., New York, NYMATHGoogle Scholar
  38. 38.
    Cooley, R. (2000) Web Usage Mining: Discovery and Application of Interesting Patterns from Web Data. Ph.d. thesis, University of MinnesotaGoogle Scholar
  39. 39.
    Azzag, H., Picarougne, F., Guinot, C., Venturini, G. (2005) Vrminer: a tool for multimedia databases mining with virtual reality. In Darmont, J., Boussaid, O., eds.: Processing and Managing Complex Data for Decision Support. to appear.Google Scholar
  40. 40.
    Johnson, B., Shneiderman, B. (1991) Tree-maps: A space-filling approach to the visualization of hierarchical information structures. In: Proc. of Visualization’91, San Diego, CA 284-291Google Scholar
  41. 41.
    Shneiderman, B. (1992) Tree visualization with tree-maps: A 2-D space-filling approach. ACM Transactions on Graphics 11 92-99MATHCrossRefGoogle Scholar
  42. 42.
    Carey, M., Heesch, D.and R üger, S. (2003) Info navigator: A visualization tool for document searching and browsing. In: Proceedings of the 9th International Conference on Distributed Multimedia Systems (DMS’2003)Google Scholar
  43. 43.
    Robertson, G.G., Mackinlay, J.D., Card, S.K. (1991) Cone trees: animated 3d visualizations of hierarchical information. In: CHI ’91: Proceedings of the SIGCHI conference on Human factors in computing systems, New York, NY, USA, ACM Press. 189-194Google Scholar
  44. 44.
    Fisher, D.H. (1991) Knowledge Acquisition via Incremental Conceptual Clustering. Machine Learning 2 139-172Google Scholar
  45. 45.
    Tian, Z., Raghu, R., Miron, L. (1996) Birch: An efficient data clustering method for very large databases. In Jagadish, H.V., Mumick, I.S., eds.: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996, ACM Press. 103-114Google Scholar
  46. 46.
    Sudipto, G., Rajeev, R., Kyuseok, S. (1998) CURE: an efficient clustering algorithm for large databases. In Haas, L.M., Tiwary, A., eds.: Proceedings ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, ACM Press. 73-84Google Scholar
  47. 47.
    Domingos, P., Hulten, G. (2001) Catching up with the data: Research issues in mining data streamsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hanene Azzag
    • 1
  • Christiane Guinot
    • 2
  • Gilles Venturini
    • 3
  1. 1.Laboratoire d'Informatiqueécole Polytechnique de l'Université de Tours - Département InformatiqueToursFrance
  2. 2.C.E.R.I.E.S.Neuilly sur Seine Cedex
  3. 3.Laboratoire d'Informatiqueécole Polytechnique de l'Université de Tours - Département InformatiqueToursFrance

Personalised recommendations