Performing Feature Selection with ACO

  • Richard Jensen
Part of the Studies in Computational Intelligence book series (SCI, volume 34)


Feature Selection Feature Subset Optimal Feature Subset Perform Feature Selection Good Feature Subset 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blake CL, Merz CJ (1998) UCI Repository of machine learning databases. Irvine, University of California˜mlearn/
  2. 2.
    Bonabeau E, Dorigo M, Theraulez G (1999) Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press Inc., New York, NY, USAMATHGoogle Scholar
  3. 3.
    Chouchoulas A, Shen Q (2001) Rough set-aided keyword reduction for text categorisation. Applied Artificial Intelligence, Vol. 15, No. 9, pp. 843-873CrossRefGoogle Scholar
  4. 4.
    Chouchoulas A, Halliwell J, Shen Q (2002) On the Implementation of Rough Set Attribute Reduction. Proceedings of the 2002 UK Workshop on Computational Intelligence, pp. 18-23Google Scholar
  5. 5.
    Cohen WW (1995) Fast effective rule induction. In Machine Learning: Proceedings of the 12th International Conference, pp. 115-123Google Scholar
  6. 6.
    Dash M, Liu H (1997) Feature Selection for Classification. Intelligent Data Analysis, Vol. 1, No. 3, pp. 131-156CrossRefGoogle Scholar
  7. 7.
    Devijver P, Kittler J (1982) Pattern Recognition: A Statistical Approach. Prentice HallGoogle Scholar
  8. 8.
    Drwal G (2000) Rough and fuzzy-rough classification methods implemented in RClass system. In Proceedings of the 2nd International Conference on Rough Sets and Current Trends in Computing (RSCTC 2000), pp 152-159Google Scholar
  9. 9.
    Dubois D, Prade H (1992) Putting rough sets and fuzzy sets together. In [31], pp. 203-232Google Scholar
  10. 10.
    D üntsch I, Gediga G (2000) Rough Set Data Analysis. In: A. Kent & J. G. Williams (Eds.) Encyclopedia of Computer Science and Technology, Vol. 43, No. 28, pp. 281-301Google Scholar
  11. 11.
    D üntsch I, Gediga G (2000) Rough Set Data Analysis: A road to non-invasive knowledge discovery. Bangor: MethodosGoogle Scholar
  12. 12.
    Ho TB, Kawasaki S, Nguyen NB (2003) Documents clustering using tolerance rough set model and its application to information retrieval. Studies In Fuzziness And Soft Computing, Intelligent Exploration of the Web, pp. 181-196Google Scholar
  13. 13.
    Jensen R, Shen Q (2003) Finding Rough Set Reducts with Ant Colony Optimization. In Proceedings of the 2003 UK Workshop on Computational Intelligence, pp 15-22Google Scholar
  14. 14.
    Jensen R, Shen Q (2004) Fuzzy-rough attribute eduction with application to web categorization. Fuzzy Sets and Systems, Vol. 141, No. 3, pp. 469-485MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jensen R, Shen Q (2004) Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough Based Approaches. IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No. 12, pp. 1457-1471CrossRefGoogle Scholar
  16. 16.
    Jensen R, Shen Q (2005) Fuzzy-Rough Data Reduction with Ant Colony Optimization. Fuzzy Sets and Systems, Vol. 149, No. 1, pp. 5-20MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of IEEE International Conference on Neura l Networks, pp. 1942-1948Google Scholar
  18. 18.
    Langley P (1994) Selection of relevant features in machine learning. In Proceedings of the AAAI Fall Symposium on Relevance, pp. 1-5Google Scholar
  19. 19.
    Pal SK, Skowron A (eds.) (1999) Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer Verlag, SingaporeMATHGoogle Scholar
  20. 20.
    Pawlak Z (1982) Rough Sets. International Journal of Computer and Information Sciences, Vol. 11, No. 5, pp. 341-356MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Pawlak Z (1991) Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht.MATHGoogle Scholar
  22. 22.
    Platt J (1998) Fast Training of Support Vector Machines using Sequential Minimal Optimization. Advances in Kernel Methods - Support Vector Learning, B. Sch ölkopf, C. Burges, and A. Smola, eds., MIT PressGoogle Scholar
  23. 23.
    Polkowski L, Lin TY, Tsumoto S (eds.) (2000) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, Vol. 56 Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, GermanyGoogle Scholar
  24. 24.
    Quinlan JR (1993) C4.5: Programs for Machine Learning. The Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann Publishers, San Mateo, CAGoogle Scholar
  25. 25.
    Raman B, Ioerger TR (2002) Instance-based filter for feature selection. Journal of Machine Learning Research, Vol. 1, pp. 1-23Google Scholar
  26. 26.
    Rasmani K, Shen Q (2004) Modifying weighted fuzzy subsethood-based rule models with fuzzy quantifiers. In Proceedings of the 13th International Conference on Fuzzy Systems, pp. 1687-1694Google Scholar
  27. 27.
    Salton G, Buckley C (1988) Term Weighting Approaches in Automatic Text Retrieval. Information Processing and Management, Vol. 24, No. 5, pp. 513-523CrossRefGoogle Scholar
  28. 28.
    Sch ölkopf B (1997) Support Vector Learning. R. Oldenbourg Verlag, MunichGoogle Scholar
  29. 29.
    Shen Q, Chouchoulas A (2000) A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Engineering Applications of Artificial Intelligence, Vol. 13, No. 3, pp. 263-278CrossRefGoogle Scholar
  30. 30.
    Skowron A, Grzymala-Busse JW (1994) From rough set theory to evidence theory. In Advances in the Dempster-Shafer Theory of Evidence, (R. Yager, M. Fedrizzi, and J. Kasprzyk eds.), John Wiley & Sons, Inc.Google Scholar
  31. 31.
    Slowinski R (ed.) (1992) Intelligent Decision Support. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  32. 32.
    Swiniarski RW (1996) Rough set expert system for online prediction of volleyball game progress for US olympic team. In Proceedings of the 3rd Biennial European Joint Conference on Engineering Systems Design Analysis, pp. 15-20Google Scholar
  33. 33.
    Witten IH, Frank E (1998) Generating Accurate Rule Sets Without Global Optimization. In Machine Learning: Proceedings of the 15th International Conference, Morgan Kaufmann Publishers, San FranciscoGoogle Scholar
  34. 34.
    Witten IH, Frank E (2000) Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San FranciscoGoogle Scholar
  35. 35.
    Wygralak M (1989) Rough sets and fuzzy sets - some remarks on interrelations. Fuzzy Sets and Systems, Vol. 29, No. 2, pp. 241-243MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
  37. 37.
    Zadeh LA (1965) Fuzzy sets. Information and Control, 8, pp. 338-353MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Richard Jensen
    • 1
  1. 1.Department of Computer ScienceThe University of WalesAberystwythUK

Personalised recommendations