Ants Constructing Rule-Based Classifiers

  • David Martens
  • Manu De Backer
  • Raf Haesen
  • Bart Baesens
  • Tom Holvoet
Part of the Studies in Computational Intelligence book series (SCI, volume 34)


Support Vector Machine Node Group Construction Graph Quadratic Assignment Problem Pheromone Trail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham A, Ramos V (2003) Web usage mining using artificial ant colony clustering. In Proceedings of Congress on Evolutionary Computation (CEC2003), Australia, IEEE Press, ISBN 0780378040, 1384-1391CrossRefGoogle Scholar
  2. 2.
    Baesens B (2003) Developing intelligent systems for credit scoring using machine learning techniques. PhD thesis, K.U.LeuvenGoogle Scholar
  3. 3.
    Baesens B, Van Gestel T, Viaene S, Stepanova M, Suykens J, Vanthienen J (2003) Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society, 54(6):627-635MATHCrossRefGoogle Scholar
  4. 4.
    Baesens B, Setiono R, Mues C, Vanthienen J (2003) Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, 49(3):312-329CrossRefGoogle Scholar
  5. 5.
    Bonabeau E, Dorigo M, Theraulaz G (2001) Swarm intelligence: From natural to artificial systems. Journal of Artificial Societies and Social Simulation, 4(1)Google Scholar
  6. 6.
    Bullnheimer B, Hartl RF, Strauss C (1999) Applying the ant system to the vehicle routing problem. In: Osman IH, Roucairol C, Voss S, Martello S (eds) Meta-Heuristics: Advances and Trends in Local Search Paradigms for OptimizationGoogle Scholar
  7. 7.
    Di Caro G, Dorigo M (1998) Antnet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9:317-365MATHGoogle Scholar
  8. 8.
    Cicirello VA, Smith SF (2001) Ant colony control for autonomous decentralized shop floor routing. In: the Fifth International Symposium on Autonomous Decentralized Systems, pages 383-390Google Scholar
  9. 9.
    Colorni A, Dorigo M, Maniezzo V, Trubian M (1994) Ant system for jobshop scheduling. Journal of Operations Research, Statistics and Computer Science, 34(1):39-53MATHGoogle Scholar
  10. 10.
    Dorigo M Ant colony optimization [].
  11. 11.
    Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical Report 91016, Dipartimento di Elettronica e Informatica, Politecnico di Milano, ITGoogle Scholar
  12. 12.
    Dorigo M, Maniezzo V, Colorni A (1996) The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 26(1):29-41CrossRefGoogle Scholar
  13. 13.
    Eyckelhof CJ, Snoek M (2002) Ant systems for a dynamic tsp. In: ANTS ’02: Proceedings of the Third International Workshop on Ant Algorithms, pages 88-99, London, UK. Springer-VerlagGoogle Scholar
  14. 14.
    Forsyth P, Wren A (1997) An ant system for bus driver scheduling. Research Report 97.25, University of Leeds School of Computer StudiesGoogle Scholar
  15. 15.
    Gambardella LM, Taillard E, Dorigo M (1999) Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, (50):167-176Google Scholar
  16. 16.
    Gambardella LM, Dorigo M (1995) Ant-q: A reinforcement learning approach to the traveling salesman problem. In: Proceedings of the Eleventh International Conference on Machine Learning, pages 252-260Google Scholar
  17. 17.
    Gambardella LM, Dorigo M (1996) Solving symmetric and asymmetric tsps by ant colonies. In: Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC’96), pages 622-627Google Scholar
  18. 18.
    Grass é PP (1959) La reconstruction du nid et les coordination inter-individuelles chez bellicositermes natalensis et cubitermes sp. la th érie de la stigmergie: Essai d’interpr étation du comportement des termites constructeurs. Insect. Soc., 6:41-80CrossRefGoogle Scholar
  19. 19.
    Hand D (2002) Pattern detection and discovery. In: Hand D, Adams N, Bolton R (eds) Pattern Detection and Discovery, volume 2447 of Lecture Notes in Computer Science, pages 1-12. SpringerGoogle Scholar
  20. 20.
    Handl J, Knowles J, Dorigo M (2003) Ant-based clustering: a comparative study of its relative performance with respect to k-means, average link and 1d-som. Technical Report TR/IRIDIA/2003-24, Universite Libre de BruxellesGoogle Scholar
  21. 21.
    Hettich S, Bay SD (1996) The uci kdd archive []
  22. 22.
    Liu B, Abbass HA, McKay B (2004) Classification rule discovery with ant colony optimization. IEEE Computational Intelligence Bulletin, 3(1):31-35Google Scholar
  23. 23.
    Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via linear programming. SIAM News, 23(5):1-18Google Scholar
  24. 24.
    Maniezzo V (1998) Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. Research CSR 98-1, Scienze dell’Informazione, Universit à di Bologna, Sede di Cesena, ItalyGoogle Scholar
  25. 25.
    Maniezzo V, Colorni A (1999) The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data EngineeringGoogle Scholar
  26. 26.
    Michalski RS, Mozetic I, Hong J, Lavrac N (1986) The multi-purpose incremental learning system aq15 and its testing application to three medical domains. In: AAAI, pages 1041-1047Google Scholar
  27. 27.
    Naisbitt J (1988) Megatrends : Ten New Directions Transforming Our Lives. Warner BooksGoogle Scholar
  28. 28.
    Parpinelli RS, Lopes HS, Freitas AA (2001) An ant colony based system for data mining: Applications to medical data. In: Lee Spector, Goodman E, Wu A, Langdon WB, Voigt H, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon M, Burke E (eds) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 791-797, San Francisco, California, USA, 7-11. Morgan Kaufmann Google Scholar
  29. 29.
    Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 6(4):321-332CrossRefGoogle Scholar
  30. 30.
    Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USAGoogle Scholar
  31. 31.
    Ramos V, Abraham A (2003) Swarms on continuous data. In: Proceedings of the Congress on Evolutionary Computation, IEEE Press, pages 1370-1375Google Scholar
  32. 32.
    Ripley BD (1994) Neural networks and related methods for classification. Journal of the Royal Statistical Society B, 56:409-456MATHMathSciNetGoogle Scholar
  33. 33.
    Schockaert S, De Cock M, Cornelis C, Kerre EE (2004) Efficient clustering with fuzzy ants. Applied Computational IntelligenceGoogle Scholar
  34. 34.
    Schoonderwoerd R, Holland OE, Bruten JL, Rothkrantz LJM (1996) Ant-based load balancing in telecommunications networks. Adaptive Behavior, (2):169-207Google Scholar
  35. 35.
    Socha K, Knowles J, Sampels M (2002) A M AX -M IN ant system for the university timetabling problem. In: Dorigo M, Di Caro G, Sampels M (eds) Proceedings of ANTS 2002- Third International Workshop on Ant Algorithms, volume 2463 of Lecture Notes in Computer Science, pages 1-13. Springer-Verlag, Berlin, GermanyGoogle Scholar
  36. 36.
    St ützleT, Dorigo M (1999) Aco algorithms for the quadratic assignment problem. In: Dorigo M, Corne D, Glover F (eds) New Ideas in OptimizationGoogle Scholar
  37. 37.
    St ützle T, Hoos HH (1996) Improving the ant-system: A detailed report on the M AX M IN ant system. Technical Report AIDA 96-12, FG Intellektik, TU Darmstadt, GermanyGoogle Scholar
  38. 38.
    St ützle T, Hoos HH (1997) The M AX -M IN ant system and local search for the traveling salesman problem. In: Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC’97), pages 309-314Google Scholar
  39. 39.
    St ützle T, Hoos HH (1998) Improvements on the ant system: Introducing the M AX M IN ant system. In: Steele NC, Albrecht RF, Smith GD (eds) Artificial Neural Networks and Genetic Algorithms, pages 245-249Google Scholar
  40. 40.
    St ützle T, Hoos HH (1999) M AX -M IN ant system and local search for combinatorial optimization problems. In: Osman IH, Voss S, Martello S, Roucairol C (eds) MetaHeuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 313-329Google Scholar
  41. 41.
    St ützle, Hoos HH (2000) M AX -M IN ant system. Future Generation Computer Systems, 16(8):889-914Google Scholar
  42. 42.
    Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least Squares Support Vector Machines. World Scientific, SingaporeMATHGoogle Scholar
  43. 43.
    Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process. Lett., 9(3):293-300CrossRefMathSciNetGoogle Scholar
  44. 44.
    Vapnik VN (1995) The nature of statistical learning theory. Springer-Verlag, New York, NY, USAMATHGoogle Scholar
  45. 45.
    Wade A, Salhi S (2004) An ant system algorithm for the mixed vehicle routing problem with backhauls. In: Metaheuristics: computer decision-making, pages 699-719, Norwell, MA, USA, 2004. Kluwer Academic PublishersGoogle Scholar
  46. 46.
    Witten IH, Frank E (2000) Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann Publishers Inc., San Francisco, CA, USAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Martens
    • 1
  • Manu De Backer
    • 2
  • Raf Haesen
    • 3
  • Bart Baesens
    • 4
  • Tom Holvoet
    • 5
  1. 1.Department of Applied Economic SciencesK.U.LeuvenLeuvenBelgium
  2. 2.Department of Applied Economic SciencesK.U.LeuvenLeuvenBelgium
  3. 3.Department of Applied Economic SciencesK.U.LeuvenLeuvenBelgium
  4. 4.School of Management Highfield SouthamptonUniversity of SouthamptonUK
  5. 5.Department of Computer ScienceK.U.LeuvenLeuvenBelgium

Personalised recommendations