Data Swarm Clustering

  • Christian Veenhuis
  • Mario Köppen
Part of the Studies in Computational Intelligence book series (SCI, volume 34)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkhin P (2002) Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CaliforniaGoogle Scholar
  2. 2.
    Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, NYMATHGoogle Scholar
  3. 3.
    Deneubourg JL, Goss S, Franks N, Sendova-Franks A, Detrain C, Chretien L (1991) The Dynamics of Collective Sorting: Robot-like Ants and Ant-like Robots. In: Proc. First International Conference on Simulation of Adaptive Behaviour: From Animals to Animats, pp. 356-363, MIT Press, Cambridge, MAGoogle Scholar
  4. 4.
    Handl J, Knowles J, Dorigo M (2003) Ant-based clustering: a comparative study of its relative performance with respect to k-means, average link and 1D-som. Technical Report TR/IRIDIA/2003-24. IRIDIA, Universite Libre de Bruxelles, BelgiumGoogle Scholar
  5. 5.
    Handl J, Knowles J, Dorigo M (2003) On the performance of ant-based clustering. In: Proc. 3nd International Conference on Hybrid Intelligent Systems, pp. 204-213, IOS Press, Amsterdam, The NetherlandsGoogle Scholar
  6. 6.
    Kanade PM, Hall LO (2003) Fuzzy Ants as a Clustering Concept. In: Proc. 22nd International Conference of the North American Fuzzy Information Processing Society, pp. 227-232, Chicago, Piscataway, NJ: IEEE Service CenterGoogle Scholar
  7. 7.
    Kennedy J, Eberhart RC (1995) Particle Swarm Optimization. In: Proc. IEEE International Conference on Neural Networks, pp. 1942-1948, Perth, Australia, IEEE Service Center, Piscataway, NJCrossRefGoogle Scholar
  8. 8.
    . Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco, ISBN: 1-55860-595-9Google Scholar
  9. 9.
    . Monmarche N, Slimane M, Venturini G (1999) AntClass: discovery of clusters in numeric data by an hybridization of an ant colony with the kmeans algorithm. Internal Report No. 213, E3i, Laboratoire d’Informatique, Universite de ToursGoogle Scholar
  10. 10.
    Morse DH (1970) Ecological aspects of some mixed-species foraging flocks of birds. Ecological Monographs: Vol. 40, No. 1, pp. 119-168CrossRefMathSciNetGoogle Scholar
  11. 11.
    . Murphy PM, Aha DW (1994) UCI Repository of machine learning databases. [http://www.ics.uci.edu/∼mlearn/MLRepository.html], Irvine, CA: University of California, Department of Information and Computer Science
  12. 12.
    . Omran M, Salman A, Engelbrecht AP (2002) Image Classification using Particle Swarm Optimization. In: Proc. 4th Asia-Pacific Conference on Simulated Evolution and Learning, pp. 370-374, SingaporeGoogle Scholar
  13. 13.
    Reynolds CW (1987) Flocks, herds and schools: a disctributed behavioral model. Computer Graphics 21, pp. 25-33CrossRefGoogle Scholar
  14. 14.
    Shi YH, Eberhart RC (1998) A Modified Particle Swarm Optimizer. In: Proc. IEEE International Conference on Evolutionary Computation, pp. 69-73, IEEE Press, Piscataway, NJGoogle Scholar
  15. 15.
    van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation, pp. 215-220, Piscataway, NJ: IEEE Service CenterGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Veenhuis
    • 1
  • Mario Köppen
    • 2
  1. 1.Department Pattern RecognitionFraunhofer IPKBerlinGermany
  2. 2.Department Pattern RecognitionFraunhofer IPKBerlinGermany

Personalised recommendations