Swarm Intelligence in Data Mining

  • Crina Grosan
  • Ajith Abraham
  • Monica Chis
Part of the Studies in Computational Intelligence book series (SCI, volume 34)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelbar AM, Ragab S, Mitri S (2003) Applying Co-Evolutionary Particle Swam Optimization to the Egyptian Board Game Seega. In Proceedings of The First AsianPacific Workshop on Genetic Programming, (S.B. Cho, N. X. Hoai and Y. Shan editors), 9-15, Canberra, AustraliaGoogle Scholar
  2. 2.
    Abonyi J., Feil B. and Abraham A. (2005), Computational Intelligence in Data Mining’, Informatica: An International Journal of Computing and Informatics, Vol. 29, No. 1, pp. 3-12Google Scholar
  3. 3.
    Abraham A, Ramos V (2003) Web Usage Mining Using Artificial Ant Colony Clustering and Genetic Programming, 2003 IEEE Congress on Evolutionary Computation (CEC2003), Australia, IEEE Press, ISBN 0780378040, 1384-1391CrossRefGoogle Scholar
  4. 4.
    Admane L, Benatchba K, Koudil M, Siad L, Maziz S (2006) AntPart: an algorithm for the unsupervised classification problem using ants, Applied Mathematics and Computation (http://dx.doi.org/10.1016/j.amc.2005.11.130)
  5. 5.
    Barrat A, Weight M (2000) On the properties of small-world network models. The European Physical Journal, 13:547-560Google Scholar
  6. 6.
    Blum C (2005) Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2, 353-373CrossRefGoogle Scholar
  7. 7.
    Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 43-52, 1998Google Scholar
  8. 8.
    Chen Y, Abraham A, (2006) Hybrid Learning Methods for Stock Index Modeling, Artificial Neural Networks in Finance, Health and Manufacturing: Potential and Challenges, J. Kamruzzaman, R.K. Begg and R.A. Sarker (Eds.), Idea Group Inc. Publishers, USAGoogle Scholar
  9. 9.
    Chen Y, Abraham A (2005) Hybrid Neurocomputing for Detection of Breast Cancer, The Fourth IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST’05), Japan, Springer Verlag, Germany, pp. 884-892Google Scholar
  10. 10.
    Chen Y, Peng L, Abraham A (2006) Programming Hierarchical Takagi Sugeno Fuzzy Systems, The 2nd International Symposium on Evolving Fuzzy Systems (EFS2006), IEEE PressGoogle Scholar
  11. 11.
    Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective Memory and Spatial Sorting in Animal Groups, Journal of Theoretical Biology, 218, 1-11CrossRefMathSciNetGoogle Scholar
  12. 12.
    Cui X, Potok TE (2005) Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm, Journal of Computer Sciences (Special Issue), ISSN 1549-3636, pp. 27-33Google Scholar
  13. 13.
    Deneubourg JL, Goss S, Franks N, Franks AS, Detrain C, Chretien L (1991) The dynamics of collective sorting: Robot-like ants and ant-like robots. Proceedings of the First International Conference on Simulation of Adaptive Behaviour: From Animals to Animats, Cambridge, MA: MIT Press, 1, 356-365Google Scholar
  14. 14.
    Dall’Asta L, Baronchelli A, Barrat A, Loreto V (2006) Agreement dynamics on small- world networks. Europhysics LettersGoogle Scholar
  15. 15.
    Dorigo M, Blum C (2005) Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 243-278MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artificial Life, 5(2), 137-72CrossRefGoogle Scholar
  17. 17.
    Dorigo M, Gambardella LM (1997) Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transaction on Evolutionary Computation, 1(1), 53-66CrossRefGoogle Scholar
  18. 18.
    Dorigo M, Bonaneau E, Theraulaz G (2000) Ant algorithms and stigmergy, Future Generation Computer Systems, 16, 851-871CrossRefGoogle Scholar
  19. 19.
    Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, 39-43Google Scholar
  20. 20.
    Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Seoul, KoreaGoogle Scholar
  21. 21.
    Eberhart RC, Simpson PK, Dobbins RW (1996) Computational Intelligence PC Tools, Boston, MA: Academic Press ProfessionalGoogle Scholar
  22. 22.
    Fayyad U, Piatestku-Shapio G, Smyth P, Uthurusamy R (1996) Advances in Knowledge Discovery and Data Mining, AAAI/MIT PressGoogle Scholar
  23. 23.
    Flake G (1999) The Computational Beauty of Nature. Cambridge, MA: MIT PressGoogle Scholar
  24. 24.
    Fun Y, Chen CY (2005) Alternative KPSO-Clustering Algorithm, Tamkang Journal of Science and Engineering, 8(2), 165-174Google Scholar
  25. 25.
    Handl J, Knowles J, Dorigo M (2006) Ant-based clustering and topographic mapping. Artificial Life 12(1) (in press)Google Scholar
  26. 26.
    Hu X, Shi Y, Eberhart RC (2004) Recent Advences in Particle Swarm, In Proceedings of Congress on evolutionary Computation (CEC), Portland, Oregon, 90-97Google Scholar
  27. 27.
    Jasch F, Blumen A (2001) Trapping of random walks on small-world networks. Physical Review E 64, 066104Google Scholar
  28. 28.
    Jones G, Robertson A, Santimetvirul C, Willett P (1995) Non-hierarchic document clustering using a genetic algorithm. Information Research, 1(1)Google Scholar
  29. 29.
    Kennedy J, Eberhart RC (1995) Particle Swarm Optimization. In Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center, Piscataway, NJ, Vol.IV, 1942-1948Google Scholar
  30. 30.
    Kennedy J (1997) Minds and cultures: Particle swarm implications. Socially Intelligent Agents. Papers from the 1997 AAAI Fall Symposium. Technical Report FS-97-02, Menlo Park, CA: AAAI Press, 67-72Google Scholar
  31. 31.
    Kennedy J (1998) The Behavior of Particles, In Proceedings of 7th Annual Conference on Evolutionary Programming, San Diego, USAGoogle Scholar
  32. 32.
    Kennedy J (1997) The Particle Swarm: Social Adaptation of Knowledge. In Proceedings of IEEE International Conference on Evolutionary Computation, Indianapolis, Indiana, IEEE Service Center, Piscataway, NJ, 303-308Google Scholar
  33. 33.
    Kennedy J (1992) Thinking is social: Experiments with the adaptive culture model. Journal of Conflict Resolution, 42, 56-76CrossRefGoogle Scholar
  34. 34.
    Kennedy J, Eberhart R (2001) Swarm Intelligence, Morgan Kaufmann Academic PressGoogle Scholar
  35. 35.
    Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 1671-1676Google Scholar
  36. 36.
    Krause J, Ruxton GD (2002) Living in Groups. Oxford: Oxford University PressGoogle Scholar
  37. 37.
    Krohling RA, Hoffmann F, Coelho LS (2004) Co-evolutionary Particle Swarm Optimization for Min-Max Problems using Gaussian Distribution. In Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), Portland, USA, volume 1, 959-964Google Scholar
  38. 38.
    Kuo RJ, Wang HS, Hu TL, Chou SH (2005) Application of ant K-means on clustering analysis, Computers & Mathematics with Applications, Volume 50, Issues 10-12, 1709-1724MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Liu Y, Passino KM (2000) Swarm Intelligence: Literature Overview, http://www.ece.osu.edu/ passino/swarms.pdf
  40. 40.
    Lovbjerg M, Rasmussen TK, Krink T (2001) Hybrid Particle Swarm Optimiser with Breeding and Subpopulations. Proc. of the third Genetic and Evolutionary Computation Conference (GECCO-2001), volume 1, 469-476Google Scholar
  41. 41.
    Lumer ED, Faieta B (1994) Diversity and Adaptation in Populations of Clustering Ants. Clio D, Husbands P, Meyer J and Wilson S (Eds.), Proceedings of the Third International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 3, Cambridge, MA: MIT Press, 501-508Google Scholar
  42. 42.
    Major PF, Dill LM (1978) The three-dimensional structure of airborne bird flocks. Behavioral Ecology and Sociobiology, 4, 111-122CrossRefGoogle Scholar
  43. 43.
    Merkl D (2002) Text mining with self-organizing maps. Handbook of data mining and knowledge, Oxford University Press, Inc. New York, 903-910Google Scholar
  44. 44.
    Moore C, Newman MEJ (2000) Epidemics and percolation in small-world networks. Physics. Review. E 61, 5678-5682CrossRefGoogle Scholar
  45. 45.
    Newman MEJ, Jensen I, Ziff RM (2002) Percolation and epidemics in a two-dimensional small world, Physics Review, E 65, 021904CrossRefGoogle Scholar
  46. 46.
    Oliveira LS, Britto AS Jr., Sabourin R (2005) Improving Cascading Classifiers with Particle Swarm Optimization, International Conference on Document Analysis and Recognition (ICDAR 2005), Seoul, South Korea, 570-574Google Scholar
  47. 47.
    Omran, M. Particle Swarm optimization methods for pattern Recognition and Image Processing, Ph.D. Thesis, University of Pretoria, 2005Google Scholar
  48. 48.
    Omran, M., Salman, A. and Engelbrecht, A. P. Image classification using particle swarm optimization. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning 2002 (SEAL 2002), Singapore. pp. 370-374, 2002Google Scholar
  49. 49.
    Paredis J (1994) Steps towards coevolutionary classification neural networks, Artificial Life IV, MIT Press, 359-365Google Scholar
  50. 50.
    Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative role of lateral line and vision. Journal of Comparative Physiology, 135, 315-325CrossRefGoogle Scholar
  51. 51.
    Partridge BL (1982) The structure and function of fish schools. Science American, 245, 90-99Google Scholar
  52. 52.
    Pomeroy P (2003) An Introduction to Particle Swarm Optimization, http://www.adaptiveview.com/articles/ipsop1.html
  53. 53.
    Raghavan VV, Birchand K (1979) A clustering strategy based on a formalism of the reproductive process in a natural system. Proceedings of the Second International Conference on Information Storage and Retrieval, 10-22Google Scholar
  54. 54.
    Ramos V, Muge, F, Pina, P (2002) Self-organized data and image retrieval as a consequence of inter-dynamic synergistic relationships in artificial ant colonies. Soft Computing Systems - Design, Management and Applications, Proceedings of the 2nd International Conference on Hybrid Intelligent Systems, IOS Press, 500-509Google Scholar
  55. 55.
    Selim SZ, Ismail MA (1984) K-means Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality, IEEE Transaction on Pattern Analysis and Machine Intelligence, 6, 81-87MATHCrossRefGoogle Scholar
  56. 56.
    Settles M, Rylander B (2002) Neural network learning using particle swarm optimizers. Advances in Information Science and Soft Computing, 224-226Google Scholar
  57. 57.
    Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony classifier system: application to some process engineering problems, Computers & Chemical Engineering, 28(9),1577-1584CrossRefGoogle Scholar
  58. 58.
    Shi Y, Krohling RA (2002) Co-evolutionary particle swarm optimization to solving minmax problems. In Proceedings of the IEEE Conference on Evolutionary Computation, Hawai, 1682-1687Google Scholar
  59. 59.
    Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Piscataway, NJ. 69-73Google Scholar
  60. 60.
    Skopos C, Parsopoulus KE, Patsis PA, Vrahatis MN (2005) Particle swarm optimization: an efficient method for tracing periodic orbits in three-dimensional galactic potential, Mon. Not. R. Astron. Soc. 359, 251-260CrossRefGoogle Scholar
  61. 61.
    Sousa T, Neves A, Silva A (2003) Swarm Optimisation as a New Tool for Data Mining, International Parallel and Distributed Processing Symposium (IPDPS’03), 144bGoogle Scholar
  62. 62.
    Sousa T, Silva A, Neves A (2004) Particle Swarm based Data Mining Algorithms for classification tasks, Parallel Computing, Volume 30, Issues 5-6, 767-783CrossRefGoogle Scholar
  63. 63.
    Steinbach M, Karypis G, Kumar V, (2000) A Comparison of Document Clustering Techniques. TextMining Workshop, KDD Google Scholar
  64. 64.
    Toksari MD (2006) Ant colony optimization for finding the global minimum. Applied Mathematics and Computation, (in press)Google Scholar
  65. 65.
    Tsai CF, Tsai CW, Wu HC, Yang T (2004) ACODF: a novel data clustering approach for data mining in large databases, Journal of Systems and Software, Volume 73, Issue 1, 133-145CrossRefGoogle Scholar
  66. 66.
    Ujjin S, Bentley PJ (2002) Learning User Preferences Using Evolution. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, SingaporeGoogle Scholar
  67. 67.
    Ujjin S, Bentley PJ (2003) Particle swarm optimization recommender system. Proceedings of the IEEE Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, Indiana, USA, 124-131Google Scholar
  68. 68.
    Valdes J (2004) Building Virtual Reality Spaces for Visual Data Mining with Hybrid Evolutionary-Classical Optimization: Application to Microarray Gene Expression Data. Proceedings of the IASTED International Joint Conference on Artificial Intelligence and Soft Computing (ASC’2004), 713-720Google Scholar
  69. 69.
    Weng SS, Liu YH (2006) Mining time series data for segmentation by using Ant Colony Optimization, European Journal of Operational Research, (http://dx.doi.org/10.1016/j.ejor.2005.09.001)
  70. 70.
    Watts DJ (1999) Small Worlds: The Dynamics of Networkds Between Order and Randomness. Princeton University PressGoogle Scholar
  71. 71.
    Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature, 393, 440-442CrossRefGoogle Scholar
  72. 72.
    Wu KL, Yang MS (2002) Alternative C-means Clustering Algorithms. Pattern Recognition, 35, 2267-2278MATHCrossRefGoogle Scholar
  73. 73.
    Zhao Y, Karypis G (2004) Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering, Machine Learning, 55(3), 311-331MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Crina Grosan
    • 1
  • Ajith Abraham
    • 2
  • Monica Chis
    • 3
  1. 1.Department of Computer ScienceBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.IITA Professorship ProgramSchool of Computer Science and Engineering, Chung-Ang UniversitySeoulKorea
  3. 3.Avram Iancu UniversityCluj-NapocaRomania

Personalised recommendations