Polycystin-2, or TRPP2 according to the TRP nomenclature, is encoded by PKD2, a gene mutated in patients with autosomal-dominant polycystic kidney disease. Its precise subcellular location and its intracellular trafficking are a matter of intense debate, although a consensus has emerged that it is located in primary cilia, a long-neglected organelle possibly involved in sensory functions. Polycystin-2 has a calculated molecular mass of 110 kDa, and according to structural predictions it contains six membrane-spanning domains and a pore-forming region between the 5th and 6th membrane-spanning domain. This section first introduces the reader to the field of cystic kidney diseases and to the PKD2 gene, before the ion channel properties of polycystin-2 are discussed in great detail.


Polycystic kidney disease Cation channel Mechanosensation Chemosensation Primary cilia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews PM, Porter KR (1974) A scanning electron microscopic study of the nephron. Am J Anat 140:81–115PubMedCrossRefGoogle Scholar
  2. Anyatonwu GI, Ehrlich BE (2005) Organic cation permeation through the channel formed by polycystin-2. J Biol Chem 280:29488–29493PubMedCrossRefGoogle Scholar
  3. Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–389PubMedGoogle Scholar
  4. Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW (2001) The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol 11:1341–1346PubMedCrossRefGoogle Scholar
  5. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565PubMedCrossRefGoogle Scholar
  6. Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z, Onoe T, Mei CL, Qian Q, Geng L, Witzgall R, Ehrlich BE, Somlo S (2004) Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J Biol Chem 279:19987–19995PubMedCrossRefGoogle Scholar
  7. Cartwright JHE, Piro O, Tuval I (2004) Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc Natl Acad Sci USA 101:7234–7239PubMedCrossRefGoogle Scholar
  8. Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attié-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160:973–983PubMedGoogle Scholar
  9. Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J (1999) Polycystin-L is a calcium regulated cation channel permeable to calcium ions. Nature 401:383–386PubMedGoogle Scholar
  10. Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J (2001) Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun 282:12511256Google Scholar
  11. Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18:740–742PubMedGoogle Scholar
  12. Deltas CC (2001) Mutations of the human polycystic kidney disease 2 (PKD2) gene. Hum Mutat 18:13–24PubMedCrossRefGoogle Scholar
  13. European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77:881–894CrossRefGoogle Scholar
  14. Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R (2000) Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol 11:814–827PubMedGoogle Scholar
  15. Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R (2000) The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci USA 97:4017–4022PubMedCrossRefGoogle Scholar
  16. Gallagher AR, Hidaka S, Gretz N, Witzgall R (2002) Molecular basis of autosomal-dominant polycystic kidney disease. Cell Mol Life Sci 59:682–693PubMedCrossRefGoogle Scholar
  17. Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Könecke V, de Vries U, Hammes HP, Gretz N, Witzgall R (2006) A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17:2719–2730PubMedCrossRefGoogle Scholar
  18. González-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98:1182–1187PubMedCrossRefGoogle Scholar
  19. González-Perrett S, Batelli M, Kim K, Essafi M, Timpanaro G, Moltabetti N, Reisin IL, Arnaout MA, Cantiello HF (2002) Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity. J Biol Chem 277:24959–24966PubMedCrossRefGoogle Scholar
  20. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and-2 produces unique cation-permeable currents. Nature 408:990–994PubMedCrossRefGoogle Scholar
  21. Hateboer N, Veldhuisen B, Peters D, Breuning MH, San-Millán JL, Bogdanova N, Coto E, van Dijk MA, Afzal AR, Jeffery S, Saggar-Malik AK, Torra R, Dimitrakov D, Martinez I, de Castro SS, Krawczak M, Ravine D (2000) Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int 57:1444–1451PubMedCrossRefGoogle Scholar
  22. Hayashi T, Mochizuki T, Reynolds DM, Wu G, Cai Y, Somlo S (1997) Characterization of the exon structure of the polycystic kidney disease 2 gene (PKD2). Genomics 44:131–136PubMedCrossRefGoogle Scholar
  23. Haycraft CJ, Swoboda P, Taulman PD, Thomas JH, Yoder BK (2001) The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128:1493–1505PubMedGoogle Scholar
  24. Hidaka S, Könecke V, Osten L, Witzgall R (2004) PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem 279:35009–35016PubMedCrossRefGoogle Scholar
  25. Hooper KM, Unwin RJ, Sutters M (2003) The isolated C-terminus of polycystin-1 promotes increased ATP-stimulated chloride secretion in a collecting duct cell line. Clin Sci 104:217–221PubMedCrossRefGoogle Scholar
  26. Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M (2005) Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73:425–432PubMedGoogle Scholar
  27. Köttgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Höpker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas g, Walz G (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24:705–716PubMedCrossRefGoogle Scholar
  28. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197PubMedCrossRefGoogle Scholar
  29. Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13:1153–1160PubMedGoogle Scholar
  30. Latta H, Maunsbach AB, Madden SC (1961) Cilia in different segments of the rat nephron. J Biophys Biochem Cytol 11:248–252PubMedCrossRefGoogle Scholar
  31. Lehtonen S, Ora A, Olkkonen VM, Geng L, Zerial M, Somlo S, Lehtonen E (2000) In vivo interaction of the adapter protein CD2-associated protein with the type 2 polycystic kidney disease protein, polycystin-2. J Biol Chem 275:32888–32893PubMedCrossRefGoogle Scholar
  32. Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89PubMedCrossRefGoogle Scholar
  33. Li Q, Dai Y, Guo L, Liu Y, Hao C, Wu G, Basora N, Michalak M, Chen XZ (2003a) Polycystin-2 associates with tropomyosin-1, an actin microfilament component. J Mol Biol 325:949–962PubMedCrossRefGoogle Scholar
  34. Li Q, Shen PY, Wu G, Chen XZ (2003b) Polycystin-2 interacts with troponin I, an angiogenesis inhibitor. Biochemistry 42:450–457PubMedCrossRefGoogle Scholar
  35. Li Q, Montalbetti N, Shen PY, Dai XQ, Cheeseman CI, Karpinski E, Wu G, Cantiello HF, Chen XZ (2005a) Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet 14:1587–1603PubMedCrossRefGoogle Scholar
  36. Li X, Luo Y, Starremans PG, McNamara CA, Pai Y, Zhou J (2005b) Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 7:1202–1212PubMedGoogle Scholar
  37. Li Y, Wright JM, Qian F, Germino GG, Guggino WB (2005c) Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280:41298–41306PubMedCrossRefGoogle Scholar
  38. Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23:2600–2607PubMedCrossRefGoogle Scholar
  39. Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25:8285–8298PubMedCrossRefGoogle Scholar
  40. Magistroni R, He N, Wang K, Andrew R, Johnson A, Gabow P, Dicks E, Parfrey P, Torra R, San-Millan JL, Coto E, van Dijk M, Breuning M, Peters D, Bogdanova N, Ligabue G, Albertazzi A, Hateboer N, Demetriou K, Pierides A, Deltas C, StGeorge-Hyslop P, Ravine D, Pei Y (2003) Genotype-renal function correlation in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 14:1164–1174PubMedCrossRefGoogle Scholar
  41. Markowitz GS, Cai Y, Li L, Wu G, Ward LC, Somlo S, D’Agati VD (1999) Polycystin-2 expression is developmentally regulated. Am J Physiol 277:F17–F25PubMedGoogle Scholar
  42. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73PubMedCrossRefGoogle Scholar
  43. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJM, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342PubMedCrossRefGoogle Scholar
  44. Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181PubMedCrossRefGoogle Scholar
  45. Montalbetti N, Li Q, González-Perrett S, Semprine J, Chen XZ, Cantiello HF (2005a) Effect of hydro-osmotic pressure on polycystin-2 channel function in the human syncytiotrophoblast. Pflügers Arch 451:294–303PubMedCrossRefGoogle Scholar
  46. Montalbetti N, Li Q, Timpanaro GA, González-Perrett S, Dai XQ, Chen XZ, Cantiello HF (2005b) Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin. J Physiol 566:309–325PubMedCrossRefGoogle Scholar
  47. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127:2347–2355PubMedGoogle Scholar
  48. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AEH, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137PubMedCrossRefGoogle Scholar
  49. Obermüller N, Gallagher AR, Cai Y, Gassler N, Gretz N, Somlo S, Witzgall R (1999) The rat Pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol 277:F914–F925PubMedGoogle Scholar
  50. Park JH, Li L, Cai Y, Hayashi T, Dong F, Maeda Y, Rubin C, Somlo S, Wu G (2000) Cloning and characterization of the murine Pkd2 promoter. Genomics 66:305–312PubMedCrossRefGoogle Scholar
  51. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380PubMedCrossRefGoogle Scholar
  52. Pennekamp P, Bogdanova N, Wilda M, Markoff A, Hameister H, Horst J, Dworniczak B (1998) Characterization of the murine polycystic kidney disease (Pkd2) gene. Mamm Genome 9:749–752PubMedCrossRefGoogle Scholar
  53. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel protein polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943PubMedCrossRefGoogle Scholar
  54. Peters DJM, Sandkuijl LA (1992) Genetic heterogeneity of polycystic kidney disease in Europe. Contrib Nephrol 97:128–139PubMedGoogle Scholar
  55. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79PubMedCrossRefGoogle Scholar
  56. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183PubMedCrossRefGoogle Scholar
  57. Ramasubbu K, Gretz N, Bachmann S (1998) Increased epithelial cell proliferation and abnormal extracellular matrix in rat polycystic kidney disease. J Am Soc Nephrol 9:937–945PubMedGoogle Scholar
  58. Roscoe JM, Brissenden JE, Williams EA, Chery AL, Silverman M (1993) Autosomal dominant polycystic kidney disease in Toronto. Kidney Int 44:1101–1108PubMedGoogle Scholar
  59. Rundle DR, Gorbsky G, Tsiokas L (2004) PKD2 interacts and co-localizes with mDia1 to mitotic spindles of dividing cells. Role of mDia1 in PKD2 localization to mitotic spindles. J Biol Chem 279:29728–29739PubMedCrossRefGoogle Scholar
  60. Schwiebert EM, Wallace DP, Braunstein GM, King SR, Peti-Peterdi J, Hanaoka K, Guggino WB, Guay-Woodford LM, Bell PD, Sullivan LP, Grantham JJ, Taylor AL (2002) Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys. Am J Physiol Renal Physiol 282:F763–F775PubMedGoogle Scholar
  61. Sweeney WE Jr, Chen Y, Nakanishi K, Frost P, Avner ED (2000) Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int 57:33–40PubMedCrossRefGoogle Scholar
  62. Torra R, Badenas C, Darnell A, Nicolau C, Volpini V, Revert L, Estivill X (1996) Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol 7:2142–2151PubMedGoogle Scholar
  63. Torres VE, Sweeney WE Jr, Wang X, Qian Q, Harris PC, Frost P, Avner ED (2003) EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int 64:1573–1579PubMedCrossRefGoogle Scholar
  64. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH II (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10:363–364PubMedCrossRefGoogle Scholar
  65. Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo-and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970PubMedCrossRefGoogle Scholar
  66. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939PubMedCrossRefGoogle Scholar
  67. Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye Cp, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282:341–350PubMedCrossRefGoogle Scholar
  68. Wheatley DN (1995) Primary cilia in normal and pathological tissues. Pathobiology 63:222–238PubMedCrossRefGoogle Scholar
  69. Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81PubMedCrossRefGoogle Scholar
  70. Witzgall R (2005a) New developments in the field of cystic kidney diseases. Curr Mol Med 5:455–465PubMedCrossRefGoogle Scholar
  71. Witzgall R (2005b) Polycystin-2—an intracellular or plasma membrane channel? Naunyn Schmiedebergs Arch Pharmacol 371:342–347PubMedCrossRefGoogle Scholar
  72. Wright AF, Teague PW, Pound SE, Pignatelli PM, Macnicol AM, Carothers AD, de Mey RJ, Allan PL, Watson ML (1993) A study of genetic linkage heterogeneity in 35 adult-onset polycystic kidney disease families. Hum Genet 90:569–571PubMedCrossRefGoogle Scholar
  73. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188PubMedCrossRefGoogle Scholar
  74. Xu GM, González-Perrett S, Essafi M, Timpanaro GA, Montalbetti N, Arnaout MA, Cantiello HF (2003) Polycystin-1 activates and stabilizes the polycystin-2 channel. J Biol Chem 278:1457–1462PubMedCrossRefGoogle Scholar
  75. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • R. Witzgall
    • 1
  1. 1.Institute for Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany

Personalised recommendations