Abstract

The TRPA1 protein has up to 18 N-terminal and presumed cytoplasmic ankyrin repeats followed by the six membrane spanning and single pore-loop domains characteristic of all TRPs. In mice, TRPA1 is almost exclusively expressed in nociceptive neurons of peripheral ganglia and in all the mechanosensory epithelia of inner ear. In nociceptive neurons, TRPA1 mediates the response to the proalgesic bradykinin as well as the response to pungent irritants found in mustards and garlic, and probably also to those found in cinnamon and tear gas. The channel properties of TRPA1 are discussed and compared to those of sensory transducers. TRPA1 is well conserved across the animal kingdom, with likely orthologs from human to nematode, which suggest an ancestral role for this channel, probably in sensation.

Keywords

Nociceptor Hyperalgesia Mechanotransduction Inner ear Support cell Hair cell Channel Sensory transduction Pain Hearing Mustard oil Allyl isothiocyanate AITC Icilin A-G-35 Gadolinium Amiloride Ruthenium red Gentamicin Calcium Channel potentiation Inactivation Desensitization Adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857PubMedCrossRefGoogle Scholar
  2. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hèogestèatt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–12252PubMedCrossRefGoogle Scholar
  3. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282PubMedCrossRefGoogle Scholar
  4. Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Géléoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730PubMedCrossRefGoogle Scholar
  5. Duggan A, García-Añoveros J, Corey DP (2000) Insect mechanoreception: what a long, strange TRP it’s been. Curr Biol 10:R384–R387PubMedCrossRefGoogle Scholar
  6. Farris HE, LeBlanc CL, Goswami J, Ricci AJ (2004) Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol 558:769–792PubMedCrossRefGoogle Scholar
  7. García-Añoveros J, Duggan A (2006) TRPA1 in auditory and nociceptive organs. In: Liedtke W, Heller S (eds) TRP ion channels in transduction of sensory stimuli and cellular signaling cascades. CRC Publishing/Taylor and Francis, Boca RatonGoogle Scholar
  8. Hamill OP, McBride DW Jr (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48:231–252PubMedGoogle Scholar
  9. Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:R224–226PubMedCrossRefGoogle Scholar
  10. Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274:7325–7333PubMedCrossRefGoogle Scholar
  11. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265PubMedCrossRefGoogle Scholar
  12. Jorgensen F, Ohmori H (1988) Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J Physiol 403:577–588PubMedGoogle Scholar
  13. Kimitsuki T, Nakagawa T, Hisashi K, Komune S, Komiyama S (1996) Gadolinium blocks mechano-electric transducer current in chick cochlear hair cells. Hear Res 101:75–80PubMedCrossRefGoogle Scholar
  14. Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493:596–606PubMedCrossRefGoogle Scholar
  15. Kroese AB, Das A, Hudspeth AJ (1989) Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hear Res 37:203–217PubMedCrossRefGoogle Scholar
  16. Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249PubMedCrossRefGoogle Scholar
  17. Li W, Feng Z, Sternberg PW, Shawn Xu XZ (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687PubMedCrossRefGoogle Scholar
  18. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58PubMedCrossRefGoogle Scholar
  19. Nagata K, Duggan A, Kumar G, García-Añoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–4061PubMedCrossRefGoogle Scholar
  20. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401PubMedCrossRefGoogle Scholar
  21. Reid G (2005) ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 451:250–263PubMedCrossRefGoogle Scholar
  22. Ricci A (2002) Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells. J Neurophysiol 87:1738–1748PubMedGoogle Scholar
  23. Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA (2005) The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 19:419–424PubMedCrossRefGoogle Scholar
  24. Rüsch A, Kros CJ, Richardson GP (1994) Block by amiloride and its derivatives of mechanoelectrical transduction in outer hair cells of mouse cochlear cultures. J Physiol 474:75–86PubMedGoogle Scholar
  25. Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99PubMedCrossRefGoogle Scholar
  26. Sotomayor M, Corey DP, Schulten K (2005) In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13:669–682PubMedCrossRefGoogle Scholar
  27. Stepanyan R, Boger ET, Friedman TB, Frolenkov GL (2006) TRPA1, a hair cell channel with unknown function? (abstract No. 1213). Abstr Midwinter Res Meet Assoc Res Otolaryngol, pp 211–212Google Scholar
  28. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829PubMedCrossRefGoogle Scholar
  29. Tracey WD Jr, Wilson RI, Laurent G, Benzer S (2003) painless, a Drosophila gene essential for nociception. Cell 113:261–273PubMedCrossRefGoogle Scholar
  30. Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T (2003) Opposite thermosensor in fruitfly and mouse. Nature 423:822–823PubMedCrossRefGoogle Scholar
  31. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. García-Añoveros
    • 1
  • K. Nagata
    • 2
  1. 1.Departments of Anesthesiology, Physiology, and NeurologyNorthwestern University Institute for Neuroscience, Feinberg School of MedicineChicagoUSA
  2. 2.Department of AnesthesiologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations