Composition of Quadratic Forms: An Algebraic Perspective

  • Della D. Fenster
  • Joachim Schwermer

4. Conclusion

There are many ways to measure the reception — and success — of a text, or, more precisely, the ideas of a text. We have elaborated here, in part, on Martin Kneser’s personal remarks and contributions at Oberwolfach, in June 2001. That Gauss’s question on the composition of forms could lead to the construction of a complex, yet stunningly elegant, algebraic theory of composition for binary quadratic modules over an arbitrary commutative ring with unity certainly testifies — again — to the breadth and depth of Gauss’s original ideas. Hurwitz’s private thoughts on Gauss’s composition of forms at the close of the nineteenth century, Bhargava’s more contemporary results on the arithmetic of number fields and Kneser’s extension of the theory via Clifford algebras provide further evidence of the lasting impact of the Disquisitiones Arithmeticae.


Quadratic Form Clifford Algebra Great Common Divisor Composition Algebra Binary Quadratic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belabas, Karim. 2005. Paramétrisation de structures algébriques et densité de discriminants (d’après Bhargava). In Séminaire Bourbaki. Vol. 2003–2004, exposé 935, pp. 267–299. Astérisque 299. Paris: Société mathématique de France.Google Scholar
  2. Bhargava, Manjul. 2004. Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations. Annals of Maths 159, 217–250. II. On cubic analogues of Gauss composition. Annals of Maths 159, 865–886. III. The parametrization of quartic rings. Annals of Maths 159, 1329–1360.MathSciNetGoogle Scholar
  3. ____. 2005. The density of discriminants of quartic rings and fields. Annals of Maths 162, 1031–1062.MathSciNetGoogle Scholar
  4. Brandt, Heinrich. 1913. Zur Komposition der quaternären quadratischen Formen. Journal für die reine und angewandte Mathematik 143, 106–129.Google Scholar
  5. ____. 1924. Der Kompositionsbegriff bei den quaternären quadratischen Formen. Mathematische Annalen 91, 300–315.CrossRefMathSciNetGoogle Scholar
  6. Dickson, Leonard E. 1923. History of the Theory of Numbers, vol. III. Washington D.C.: Carnegie Institution of Washington.Google Scholar
  7. Dulin, Bill J., Butts, Hubert S. 1972. Composition of binary quadratic forms over integral domains. Acta Arithmetica 20, 223–251.MathSciNetGoogle Scholar
  8. Gauss, Carl Friedrich. 1866. Werke, ed. Königliche Gesellschaft der Wissenschaften zu Göttingen, vol. III. Göttingen: Universitäts-Druckerei.Google Scholar
  9. Hahn, Alexander, O’Meara, O. Timothy. 1989. The Classical Groups and K-Theory. Grundlehren der mathematischen Wissenschaften 291. Berlin, Heidelberg: Springer.zbMATHGoogle Scholar
  10. Hurwitz, Adolf. 1898. Über die Komposition der quadratischen Formen von beliebig vielen Veränderlichen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 309–316. Repr. Mathematische Werke, vol. II, pp. 565–571. Basel, Stuttgart: Birkhäuser, 1963.Google Scholar
  11. Jacobson, Nathan. 1958. Composition algebras and their automorphisms. Rendiconti del Circolo Matematico di Palermo 2nd ser. 7, 55–80.Google Scholar
  12. Kaplansky, Irving. 1968. Composition of binary quadratic forms. Studia Mathematica 31, 523–530.MathSciNetGoogle Scholar
  13. Kneser, Martin. 1982. Composition of binary quadratic forms. Journal of Number Theory 15, 406–413.CrossRefMathSciNetGoogle Scholar
  14. ____. 1987. Komposition quadratischer Formen. Wissenschaftliche Beiträge der Martin-Luther-Universität Halle-Wittenberg. 1987/33 (M48), 161–173.Google Scholar
  15. ____. 2002. Quadratische Formen. Berlin, Heidelberg, New York: Springer.zbMATHGoogle Scholar
  16. Kneser, Martin, Knus, Max-Albert, Ojanguren, Manuel, Parimala, Raman, Sridharan, Raja. 1986. Composition of quaternary quadratic forms. Compositio Mathematica 60, 133–150.MathSciNetGoogle Scholar
  17. Kummer, Ernst Eduard. 1975. Collected Papers, ed. A. Weil. 2 vols. Berlin: Springer.Google Scholar
  18. Neumann, Olaf. 1979. Bemerkungen aus heutiger Sicht über Gauß’ Beiträge zur Zahlentheorie, Algebra und Funktionentheorie. NTM-Schriftenreihe 16:2, 22–39.MathSciNetGoogle Scholar
  19. ____. 1980. Zur Genesis der algebraischen Zahlentheorie. Bemerkungen aus heutiger Sicht über Gauss’ Beiträge zu Zahlentheorie, Algebra und Funktionentheorie. 2. und 3. Teil. NTM-Schriftenreihe 17:1, 32–48; 17:2, 38–58.MathSciNetGoogle Scholar
  20. Smith, Henry J. S. 1862. Report on the Theory of Numbers, part IV. Report of the British Association for the Advancement of Science for 1862, 503–526. Repr. in Collected Mathematical Papers, ed. J. W. L. Glaisher, vol. I, pp. 229–262. Oxford: Clarendon, 1894.Google Scholar
  21. Springer, Tonny Albert, Veldkamp, Ferdinand D. 2000. Octonions, Jordan Algebras and Exceptional Groups. Berlin, Heidelberg, New York: Springer.zbMATHGoogle Scholar
  22. Towber, James. 1980. Composition of oriented binary quadratic form-classes over commutative rings. Advances in Mathematics 36, 1–107.CrossRefMathSciNetGoogle Scholar
  23. Waterhouse, William C. 1984. Composition of norm-type forms. Journal für die reine und angewandte Mathematik 353, 85–97.MathSciNetGoogle Scholar
  24. Weil, André. 1984. Number Theory. An Approach through History from Hammurapi to Legendre. Boston, Bastel, Stuttgart: Birkhäuser.zbMATHGoogle Scholar
  25. ____. 1986. Gauss et la composition des formes quadratiques binaires. In Aspects of Mathematics and its Applications, ed. J.A. Barroso, pp. 895–912. North-Holland Mathematical Library 34. Amsterdam: North-Holland, Elsevier.Google Scholar
  26. Witt, Ernst. 1937. Theorie der quadratischen Formen in beliebigen Körpern. Journal für die reine und angewandte Mathematik 176, 31–44.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Della D. Fenster
    • 1
  • Joachim Schwermer
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of RichmondRichmondUSA
  2. 2.Fakultät für MathematikUniversität WienWienAustria

Personalised recommendations