MRI of Pulmonary Ventilation

  • Jim M. Wild
  • F. William Hersman
  • Samuel Patz
  • Iga Muradian
  • Mirko I. Hrovat
  • Hiroto Hatabu
  • James P. Butler
  • Wolfgang G. Schreiber
  • Olaf Dietrich
Part of the Medical Radiology book series (MEDRAD)


Gas imaging has opened the new field of direct imaging of pulmonary ventilation by MRI. The use of hyperpolarised 3He gas for MRI of the lung has been pioneered by a number of groups worldwide. Due to the enormous progress in the fields of hyperpolarisation technology, administration of hyperpolarised 3He, MR hardware, and MR pulse sequences significant progress has been made and the translation into the clinical arena has been accomplished. This chapter gives an overview of the technical methods for HP 3He MRI for human lung imaging, focusing on gas polarisation methods, background physics, MRI hardware considerations, MRI pulse sequence considerations, safety considerations for imaging inhaled 3He, and pulse sequence design for probing lung physiology and anatomy. Where possible the methods will be highlighted with reference to the literature and illustrated with clinical examples of images from the author’s home group. For further discussion on the growing clinical applications the reader is referred to Chaps. 8, 9 and 10.

Hyperpolarized xenon-129 (129Xe) has enormous potential to provide noninvasive functional information about the lung. In particular, because inhaled xenon follows the same pathway as oxygen, diffusing from alveolar gas spaces to septal tissue and blood, gas exchange parameters can be measured. For example, by measuring the time-dependent septal uptake of 129Xe, information about alveolar surface area, septal thickness and vascular transit times can be obtained. A principal obstacle to the development and application of this technology to humans has been the lack of a polarizer that can provide sufficient quantities of highly polarized 129Xe gas. This problem, however, has recently been solved. To obtain quantitative measures of pulmonary function with 129Xe, two methods have been studied. One is a direct method that measures the magnetic resonance signal from the gas spaces and from the different septal tissue compartments. In principal this is straightforward since the signal from each compartment can be distinguished due to a unique chemical shift frequency. In practice, however, there are limitations because of the very small signal available to measure in the septal tissue. Thus, the direct measurement of 129Xe interphase diffusion in humans has been principally confined to whole lung measurements. To obtain regional maps of 129Xe interphase diffusion, the Xenon Transfer Contrast (XTC) method has been utilized. XTC is an indirect method that measures the attenuation in the gas phase magnetization due to interphase diffusion between the gas phase and septal tissue compartments. Using XTC, regional maps of interphase diffusion in humans has been demonstrated.

Fluorine MRI of the lung is an interesting new approach that may have the potential for broader use than MRI based on hyperpolarized gases like He-3 or Xe-129. Although in general the image quality is worse in fluorine MRI than that obtained with hyperpolarized gases, the latter approach has the advantage of very simple requirements: only an MRI system with non-proton imaging capabilities and a dedicated fluorine-19 MRI coil are required. Fluorinated gases do not need complex treatment before use – this makes their application less demanding on the local infrastructure and, potentially, may also reduce costs. However, currently, the most significant drawback of these gases is that they have not yet been approved for human application.

The direct visual assessment of the lung parenchyma and imaging of lung ventilation using proton MRI is considerably more difficult than MRI of most other organs due to the very low signal intensity of the lung parenchyma. The low signal intensity is caused by the low average proton density and the short T2* relaxation time of lung tissue. Several methods for proton-MRI-based ventilation measurements have been proposed in order to overcome these difficulties. Currently the most established technique is oxygen-enhanced MRI of the lung, employing inhaled molecular oxygen as a T1-reducing contrast agent, which enhances the signal of the protons in the lung. The clinical application of oxygen-enhanced lung MRI has been assessed in several studies. Main advantages of oxygen- enhanced MRI are the general availability of oxygen and the relative safety of oxygen administration. Potential limitations of oxygen-enhanced lung MRI are the relatively low signal enhancement corresponding to a T1 reduction of about 10 %, and the complex contrast mechanism with contributions due to ventilation, perfusion, and oxygen-diffusion properties of the lung. Newer techniques based on non-enhanced dynamic MR acquisitions appear to be a promising tool for ventilation assessment that may be available in the near future. Other proposed techniques such as imaging after administration of aerosolized gadolinium contrast agents or after infusion of water- in-perfluorocarbon emulsions into the lung require still considerably more research before they might become applicable in clinical MR imaging.


Magn Reson Image Total Lung Capacity Pulmonary Ventilation Liquid Ventilation Haste Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Section 4.1

  1. Ajraoui S, Ireland R., Lee KJ, Woodhouse N, Wild JM (2008) Anatomical trends in coregistered ADC and T2* maps of 3He gas in the lungs of healthy normals. Proc Int Soc Magn Reson Med 16Google Scholar
  2. Al-Kadi OS, Watson D (2008) Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 55(7):1822–1830PubMedGoogle Scholar
  3. Altes TA, Powers PL, Knight-Scott J et?al. (2001) Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imag 13(3):378–384Google Scholar
  4. Carr H, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. J Chem Phys 94:630–638Google Scholar
  5. Cieslar K, Alsaid H, Stupar V et?al. (2007) Measurement of nonlinear pO2 decay in mouse lungs using 3He-MRI. NMR Biomed 20(3):383–391PubMedGoogle Scholar
  6. Colegrove D, Schearer LD, Walters GK (1963) Phys Rev 132:2561–2572Google Scholar
  7. Conradi MS, Bruns MA, Sukstanskii AL et?al. (2004) Feasibility of diffusion-NMR surface-to-volume measurements tested by calculations and computer simulations. J Magn Reson 169(2):196–202PubMedGoogle Scholar
  8. Conradi MS, Yablonskiy DA, Woods JC et?al. (2008) The role of collateral paths in long-range diffusion of 3He in lungs. Acad Radiol 15(6):675–682PubMedGoogle Scholar
  9. De Lange E, Altes T, Harding D et?al.(2003) Hyperpolarized gas MR imaging of the lung: safety assessment of inhaled helium-3. Proceedings RSNA K03–879Google Scholar
  10. de Rochefort L, Maitre X, Fodil R et?al. (2006) Phase-contrast velocimetry with hyperpolarized 3He for in vitro and in vivo characterization of airflow. Magn Reson Med 55(6):1318–1325PubMedGoogle Scholar
  11. De Zanche N, Chhina N, Teh K et?al. (2008) Asymmetric quadrature split birdcage coil for hyperpolarized 3He lung MRI at 1.5 T. Magn Reson Med 60(2):431–438PubMedGoogle Scholar
  12. Deninger AJ, Eberle B, Bermuth J et?al. (1999) Quantification of regional intrapulmonary oxygen partial pressure evolution during apnea by (3)He MRI. J Magn Reson 141(2):207–216PubMedGoogle Scholar
  13. Deninger AJ, Eberle B, Bermuth J et?al. (2002a) Assessment of a single-acquisition imaging sequence for oxygen-sensitive (3)He-MRI. Magn Reson Med 47(1):105–114Google Scholar
  14. Deninger AJ, Mansson S, Petersson JS et?al. (2002b) Quantitative measurement of regional lung ventilation using 3He MRI. Magn Reson Med 48(2):223–232Google Scholar
  15. Donnelly LF, MacFall JR, McAdams HP et?al. (1999) Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung – preliminary observations. Radiology 212(3):885–889PubMedGoogle Scholar
  16. Driehuys B, Walker J, Pollaro J et?al. (2007) 3He MRI in mouse models of asthma. Magn Reson Med 58(5):893–900PubMedGoogle Scholar
  17. Dupuich D, Berthezene Y, Clouet PL et?al. (2003) Dynamic 3He imaging for quantification of regional lung ventilation parameters. Magn Reson Med 50(4):777–783PubMedGoogle Scholar
  18. Durand E, Guillot G, Darrasse L et?al. (2002) CPMG measurements and ultrafast imaging in human lungs with hyperpolarized helium-3 at low field (0.1 T). Magn Reson Med 47(1):75–81PubMedGoogle Scholar
  19. Ebert M, Grossmann T, Heil W et?al. (1996) Nuclear magnetic resonance imaging with hyperpolarised helium-3. Lancet 347(9011):1297–1299PubMedGoogle Scholar
  20. Evans A, McCormack G, Santyr G et?al. (2008) Mapping and quantifying hyperpolarized 3He magnetic resonance imaging apparent diffusion coefficient gradients. J Appl Physiol 105(2):693–699PubMedGoogle Scholar
  21. Fain SB, Altes TA, Panth SR et?al. (2005) Detection of age-dependent changes in healthy adult lungs with diffusion-weighted 3He MRI. Acad Radiol 12(11):1385–1393PubMedGoogle Scholar
  22. Fain SB, Panth SR, Evans MD et?al. (2006) Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology 239(3):875–883PubMedGoogle Scholar
  23. Fain SB, Korosec FR, Holmes JH et?al. (2007) Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging 25(5):910–293PubMedGoogle Scholar
  24. Fichele S, Paley MN, Woodhouse N et?al. (2004a) Investigating 3He diffusion NMR in the lungs using finite difference simulations and in vivo PGSE experiments. J Magn Reson 167(1):1–11Google Scholar
  25. Fichele S, Woodhouse N, Swift AJ et?al. (2004b) MRI of helium-3 gas in healthy lungs: posture related variations of alveolar size. J Magn Reson Imaging 20(2):331–335Google Scholar
  26. Fichele S, Paley MN, Woodhouse N et?al. (2005) Measurements and modeling of long range 3He diffusion in the lung using a “slice-washout” method. J Magn Reson 174(1):28–33PubMedGoogle Scholar
  27. Fischer MC, Spector ZZ, Ishii M et?al. (2004) Single-acquisition sequence for the measurement of oxygen partial pressure by hyperpolarized gas MRI. Magn Reson Med 52(4):766–773PubMedGoogle Scholar
  28. Gast KK, Viallon M, Eberle B et?al. (2002) MRI in lung transplant recipients using hyperpolarized 3He: comparison with CT. J Magn Reson Imaging 15(3):268–274PubMedGoogle Scholar
  29. Gast KK, Puderbach MU, Rodriguez I et?al. (2003) Distribution of ventilation in lung transplant recipients: evaluation by dynamic 3He-MRI with lung motion correction. Invest Radiol 38(6):341–348PubMedGoogle Scholar
  30. Goodson BM (2002) Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J Magn Reson 155(2):157–216PubMedGoogle Scholar
  31. Grebenkov DS, Guillot G, Sapoval B (2007) Restricted diffusion in a model acinar labyrinth by NMR: theoretical and numerical results. J Magn Reson 184(1):143–156PubMedGoogle Scholar
  32. Holmes JH, Korosec FR, Du J et?al. (2007) Imaging of lung ventilation and respiratory dynamics in a single ventilation cycle using hyperpolarized He-3 MRI. J Magn Reson Imaging 26(3):630–636PubMedGoogle Scholar
  33. Holmes JH, O’Halloran RL, Brodsky EK et?al. (2008) 3D hyperpolarized He-3 MRI of ventilation using a multi-echo projection acquisition. Magn Reson Med 59(5):1062–1071PubMedGoogle Scholar
  34. Ireland RH, Bragg CM, Mc Jury M et al. (2007) Feasibility of image registration and intensity-modulated radiotherapy planning with hyperpolarized helium-3 magnetic resonance imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 68:273–281PubMedGoogle Scholar
  35. Kastler A (1950) Quelques suggestions concernant la production optique et la detection optique d´une inégalité de population des niveaux de quantification spatiale des atomes. Application à l´expérience de Stern et Gerlach et à la resonance magnétique. J Phys Radium 11:255–265Google Scholar
  36. Kauczor HU, Mainz Helium P (2002) Hyperpolarized 3helium gas as a novel contrast agent for functional MRI of ventilation. Acad Radiol 9(suppl 2):S504–506PubMedGoogle Scholar
  37. Kauczor HU, Hofmann D, Kreitner KF et?al. (1996) Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201(2):564–568PubMedGoogle Scholar
  38. Koumellis P, van Beek EJ, Woodhouse N et?al. (2005) Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3He MRI-preliminary results in children with cystic fibrosis. J Magn Reson Imaging 22(3):420–426PubMedGoogle Scholar
  39. Lee RF, Johnson G, Grossman RI et?al. (2006) Advantages of parallel imaging in conjunction with hyperpolarized helium – a new approach to MRI of the lung. Magn Reson Med 55(5):1132–1141PubMedGoogle Scholar
  40. Liner J, Weissman S (1972) Determination of the temperature dependence of gaseous diffusion coefficients using gas chromatographic apparatus. J Chem Phys 56:2288–2290Google Scholar
  41. Lutey BA, Lefrak SS, Woods JC et?al. (2008) Hyperpolarized 3He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology 248(2):655–661PubMedGoogle Scholar
  42. MacFall JR, Charles HC, Black RD et?al. (1996) Human lung air spaces: potential for MR imaging with hyperpolarized He-3. Radiology 200(2):553–558PubMedGoogle Scholar
  43. Mata J, Altes T, Knake J et?al. (2008) Hyperpolarized 3He MR imaging of the lung: effect of subject immobilization on the occurrence of ventilation defects. Acad Radiol 15(2):260–264PubMedGoogle Scholar
  44. Middleton H, Black RD, Saam B et?al. (1995) MR imaging with hyperpolarized 3He gas. Magn Reson Med 33(2):271–275PubMedGoogle Scholar
  45. Moller HE, Chen XJ, Saam B et?al. (2002) MRI of the lungs using hyperpolarized noble gases. Magn Reson Med. 47(6):1029–1051PubMedGoogle Scholar
  46. Mugler JP, Brookeman JR (2005) Signal-to-noise considerations for parallel imaging with hyperpolarized gases. Proc Intl Soc Magn Reson Med 13:485Google Scholar
  47. Mugler JP, Brookemann JR, Knight-Scott J, Maier T, De Lange EE, Bogorad PL (1998) Regional measurement of the 3He diffusion coefficient in the human lung. Proc Int Soc Magn Reson Med (6)Google Scholar
  48. Muller CJ, Loffler R, Deimling M et?al. (2001) MR lung imaging at 0.2 T with T1-weighted true FISP: native and oxygen-enhanced. J Magn Reson Imaging 14(2):164–168PubMedGoogle Scholar
  49. Oros AM, Shah NJ (2004) Hyperpolarized xenon in NMR and MRI. Phys Med Biol 49(20):21Google Scholar
  50. Owers-Bradley JR, Fichele S, Bennattayalah A et?al. (2003) MR tagging of human lungs using hyperpolarized 3He gas. J Magn Reson Imaging 17(1):142–146PubMedGoogle Scholar
  51. Parra-Robles J, Cross AR, Santyr GE (2005) Theoretical signal-to-noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs. Med Phys 32(1):221–229PubMedGoogle Scholar
  52. Parraga G, Mathew L, Etemad-Rezai R et?al. (2008) Hyperpolarized 3He magnetic resonance imaging of ventilation defects in healthy elderly volunteers: initial findings at 3.0 Tesla. Acad Radiol 15(6):776–785PubMedGoogle Scholar
  53. Peces-Barba G, Ruiz-Cabello J, Cremillieux Y et?al. (2003) Helium-3 MRI diffusion coefficient: correlation to morphometry in a model of mild emphysema. Eur Respir J 22(1):14–19PubMedGoogle Scholar
  54. Saam B, Happer W, Middleton H (1995) Nuclear relaxation of 3He in the presence of O2. Phys Rev A 52(1):862–865PubMedGoogle Scholar
  55. Saam B, Yablonskiy DA, Gierada DS et?al. (1999) Rapid imaging of hyperpolarized gas using EPI. Magn Reson Med 42(3):507–514PubMedGoogle Scholar
  56. Saam B, Yablonskiy DA, Kodibagkar VD et?al. (2000) MR imaging of diffusion of (3)He gas in healthy and diseased lungs. Magn Reson Med 44(2):174–179PubMedGoogle Scholar
  57. Salerno M, Altes TA, Brookeman JR et?al. (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46(4):667–677PubMedGoogle Scholar
  58. Salerno M, de Lange EE, Altes TA et?al. (2002) Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes – initial experience. Radiology 222(1):252–260PubMedGoogle Scholar
  59. Salerno M, Brookeman JR, de Lange EE et?al. (2005) Hyperpolarized 3He lung imaging at 0.5 and 1.5 Tesla: a study of susceptibility-induced effects. Magn Reson Med 53(1):212–216PubMedGoogle Scholar
  60. Samee S, Altes T, Powers P et?al. (2003) Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. J Allergy Clin Immunol 111(6):1205–1211PubMedGoogle Scholar
  61. Schearer LD, Walters GK (1965) Nuclear spin-lattice relaxation in the presence of magnetic-field gradients. Phys Rev A 139:1398–1402Google Scholar
  62. Schmiedeskamp JD, Ebert M, Heil W, Hiebel S, Otten E, Surkau R, Rudersdorf D, Wolf M, Grossmann T (2003a) Large scale production and handling of spin polarized helium-3 for MRT of lungs. Proc Int Soc Magn Reson Med, p 1392Google Scholar
  63. Schmiedeskamp JH, Heil W, Otten E, et?al. (2003b) Paramagnetic relaxation of spin polarized He-3 at bare glass surfaces Part I. Eur Phys J D 38(3):427–438Google Scholar
  64. Schreiber WG, Weiler N, Kauczor HU et?al. (2000) [Ultrafast MRI of lung ventilation using hyperpolarized helium-3]. Rofo 172(2):129–133PubMedGoogle Scholar
  65. Stavngaard T, Sogaard LV, Mortensen J et?al. (2005) Hyperpolarized 3He MRI and 81mKr SPECT in chronic obstructive pulmonary disease. Eur J Nucl Med Mol Imaging 32(4):448–457PubMedGoogle Scholar
  66. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292Google Scholar
  67. Sukstanskii AL, Yablonskiy DA (2008) In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background. J Magn Reson 190(2):200–210PubMedGoogle Scholar
  68. Swift AJ, Wild JM, Fichele S et?al. (2005) Emphysematous changes and normal variation in smokers and COPD patients using diffusion 3He MRI. Eur J Radiol 54(3):352–358PubMedGoogle Scholar
  69. Teh K, Lee KJ, Wild JM (2007a) Slice profile effects in variable flip angle hyperpolarized 3He MRI. Proc Int Soc Magn Reson Med 15:1297Google Scholar
  70. Teh K, Parnell SR, Woodhouse N, Wild JM (2007b) Time resolved lung ventilation volume measurement with multislice EPI using hyperpolarized 3He. Proc Int Soc Magn Reson Med 15:944Google Scholar
  71. Tooker AC, Hong KS, McKinstry EL et?al. (2003) Distal airways in humans: dynamic hyperpolarized 3He MR imaging – feasibility. Radiology 227(2):575–579PubMedGoogle Scholar
  72. Tsai LL, Mair RW, Rosen MS et?al. (2008) An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging. J Magn Reson 193(2):274–285PubMedGoogle Scholar
  73. van Beek EJ, Hill C, Woodhouse N et?al. (2007) Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol 17(4):1018–1024PubMedGoogle Scholar
  74. van Beek EJ, Wild JM, Kauczor HU et?al. (2004) Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging 20(4):540–554PubMedGoogle Scholar
  75. Verbanck S, Paiva M (2007) Simulation of the apparent diffusion of helium-3 in the human acinus. J Appl Physiol 103(1):249–254PubMedGoogle Scholar
  76. Vignaud A, Maitre X, Guillot G et?al. (2005) Magnetic susceptibility matching at the air-tissue interface in rat lung by using a superparamagnetic intravascular contrast agent: influence on transverse relaxation time of hyperpolarized helium-3. Magn Reson Med 54(1):28–33PubMedGoogle Scholar
  77. Walker TG, Happer W (1997) Spin exchange optical pumping of noble-gas nuclei. Rev Mod Phys (69):629–642Google Scholar
  78. Wang C, Miller GW, Altes TA et?al. (2006) Time dependence of 3He diffusion in the human lung: measurement in the long-time regime using stimulated echoes. Magn Reson Med 56(2):296–309PubMedGoogle Scholar
  79. Wang C, Altes TA, Mugler JP III et?al. (2008) Assessment of the lung microstructure in patients with asthma using hyperpolarized 3He diffusion MRI at two time scales: comparison with healthy subjects and patients with COPD. J Magn Reson Imaging 28(1):80–88PubMedGoogle Scholar
  80. Wild JM, Paley MNJ, Viallon M et?al. (2002a) k-space filtering in 2D gradient-echo breath-hold hyperpolarized He-3 MRI: spatial resolution and signal-to-noise ratio considerations. Magn Reson Med 47(4):687–695Google Scholar
  81. Wild JM, Schmiedeskamp J, Paley MNJ et?al. (2002b) MR imaging of the lungs with hyperpolarized helium-3 gas transported by air. Phys Med Biol 47(13):N185–N190Google Scholar
  82. Wild JM, Fichele S, Woodhouse N et?al. (2003a) Assessment and compensation of susceptibility artifacts in gradient echo MRI of hyperpolarized 3He gas. Magn Reson Med 50(2):417–422Google Scholar
  83. Wild JM, Paley MN, Kasuboski L et?al. (2003b) Dynamic radial projection MRI of inhaled hyperpolarized 3He gas. Magn Reson Med 49(6):991–997Google Scholar
  84. Wild JM, Woodhouse N, Paley MN et?al. (2004) Comparison between 2D and 3D gradient-echo sequences for MRI of human lung ventilation with hyperpolarized 3He. Magn Reson Med 52(3):673–678PubMedGoogle Scholar
  85. Wild JM, Fichele S, Woodhouse N et?al. (2005) 3D volume-localized pO2 measurement in the human lung with 3He MRI. Magn Reson Med 53(5):1055–1064PubMedGoogle Scholar
  86. Wild JM, Teh K, Woodhouse N et?al. (2006) Steady-state free precession with hyperpolarized 3He: experiments and theory. J Magn Reson 183(1):13–24PubMedGoogle Scholar
  87. Wild JM, Woodhouse N, Teh K (2007) Single-scan acquisition of registered hyperpolarized (3)He ventilation and ADC images using a hybrid 2D gradient-echo sequence. Magn Reson Med 57(6):1185–1189PubMedGoogle Scholar
  88. Woodhouse N, Wild JM, Paley MN et?al. (2005) Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers. J Magn Reson Imaging 21(4):365–369PubMedGoogle Scholar
  89. Woodhouse N, Mills GH, Flemming S, Fichele S, van Beek EJ (2006) Comparison of hyperpolarized 3-He administration methods in healthy as diseased subjects. Proc ISMRM 2006, p 1288Google Scholar
  90. Woods JC, Yablonskiy DA, Chino K et?al. (2004) Magnetization tagging decay to measure long-range (3)He diffusion in healthy and emphysematous canine lungs. Magn Reson Med 51(5):1002–1008PubMedGoogle Scholar
  91. Woods JC, Choong CK, Yablonskiy DA et?al. (2006) Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med 56(6):1293–1300PubMedGoogle Scholar
  92. Yablonskiy DA, Sukstanskii AL, Leawoods JC et?al. (2002) Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI. Proc Natl Acad Sci U S A 99(5):3111–3116PubMedGoogle Scholar
  93. Zhao L, Mulkern R, Tseng CH et?al. (1996) Gradient-echo imaging considerations for hyperpolarized 129Xe MR. J Magn Reson B 113:179–183Google Scholar
  94. Zhu H, Ruset IC, Hersman FW (2005) Spectrally narrowed external-cavity high-power stack of laser diode arrays. Opt Lett 30(11):1342–1344PubMedGoogle Scholar

Section 4.2

  1. Abdeen N, Cross A, Cron G et?al. (2006) Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold. Magn Reson Med 56:255–264PubMedGoogle Scholar
  2. Albert MS, Cates GD, Driehuys B et?al. (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370:199–201PubMedGoogle Scholar
  3. Butler JP, Mair RW, Hoffmann D et?al. (2002) Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR. J Phys Condens Matter 14:L297–L304PubMedGoogle Scholar
  4. Cai J, Mata JF, Ruppert K et?al. (2006) Characterizing surface-to-volume ratio using hyperpolarized xenon-129 exchange dynamics in a rabbit model. Proc 14th Intl Soc Magn Reson Med, p 863Google Scholar
  5. Coxson HO, Rogers RM, Whittall KP et?al. (1999) A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 159:851–856PubMedGoogle Scholar
  6. Driehuys B, Cofer GP, Pollaro J, Mackel JB, Hedlund LW, Johnson GA (2006) Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. PNAS 103:18278–18283PubMedGoogle Scholar
  7. Eger EL, Larson CP (1964) Anaesthetic solubility in blood and tissues. Brit J Anaesth 36:140–149PubMedGoogle Scholar
  8. Gil J, Bachofen H, Gehr P, Weibel WR (1979) Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J Appl Physiol Respirat Environ Exercise Physiol 47:990–1001Google Scholar
  9. Latchaw RE, Yonas H, Pentheny SL, Gur D (1987) CT cerebral blood flow determination. Radiology 163:251–254PubMedGoogle Scholar
  10. Mansson S, Wolber J, Driehuys B, Wollmer P, Golman K (2003) Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn Reson Med 50:1170–1179PubMedGoogle Scholar
  11. Mugler JP, Driehuys B, Brookeman JR et?al. (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37:809–815PubMedGoogle Scholar
  12. Mugler JP, Mata JF, Wang H-TJ et?al. (2004) The apparent diffusion coefficient of 129Xe in the lung: preliminary results. Proc 11th Intl Soc Magn Reson Med, p 769Google Scholar
  13. Muradian I, Patz S, Butler JP et?al. (2006) Hyperpolarized 129Xe human pulmonary gas exchange with 3-point Dixon technique. Proc 14th Intl Soc Magn Reson Med, p 1297Google Scholar
  14. Muradian I, Butler J, Hrovat M et?al. (2007) Human regional pulmonary gas exchange with xenon polarization transfer (XTC). Proc 15th Intl Soc Magn Reson Med, p 454Google Scholar
  15. Patz S, Hersman FW, Muradian I et?al. (2007) Hyperpolarized 129Xe MRI: a viable functional lung imaging modality? Eur J Radiol 64:334–344Google Scholar
  16. Patz,S, Muradian I, Hrovat MI et?al. (2008) Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2 T. Acad Radiol 15:713–727PubMedGoogle Scholar
  17. Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP (2000a) Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med 44:349–357Google Scholar
  18. Ruppert K, Brookeman JR, Hagspiel KD, Driehuys B, Mugler JP (2000b) NMR of hyperpolarized 129Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed 13:220–228Google Scholar
  19. Ruppert K, Mata JF, Brookeman JR, Hagspiel KD, Mugler JP (2004) Exploring lung function with hyperpolarized 129Xe nuclear magnetic resonance. Magn Reson Med 51:676–687PubMedGoogle Scholar
  20. Ruset IC, Ketel S, Hersman FW (2006) Optical pumping system design for large production of hyperpolarized 129Xe. Phys Rev Lett 96:053002PubMedGoogle Scholar
  21. Sakai K, Bilek AM, Oteiza E et?al. (1996) Temporal dynamics of hyperpolarized 129Xe resonances in living rats. J Magn Reson Series B 111:300–302Google Scholar
  22. Sta MN, Eckmann DM (2003) Model predictions of gas embolism growth and reabsorption during xenon anesthesia. Anesthesiology 99:638–645Google Scholar
  23. Wagshul ME, Button TM, Li JF et?al. (1996) In vivo MR imaging and spectroscopy using hyperpolarized 129Xe. Magn Reson Med 36:183–191PubMedGoogle Scholar
  24. Wang Y, Mata JF, Cai J et?al. (2008) Detection of a new pulmonary gas-exchange component for hyperpolarized xenon-129. Proc 16th Intl Soc Magn Reson Med, p 201Google Scholar
  25. Yonas H, Grundy B, Gur D, Shabason L, Wolfson SK, Cook EE (1981) Side Effects of xenon inhalation, J Comput Assist Tomogr 5:591–592PubMedGoogle Scholar

Section 4.3

  1. Adolphi NL, Kuethe DO (2008) Quantitative mapping of ventilation-perfusion ratios in lungs by 19F MR imaging of T1 of inert fluorinated gases. Magn Reson Med 59:739–746PubMedGoogle Scholar
  2. Chang YV, Conradi MS (2006) Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI. J Magn Reson 181:191–198PubMedGoogle Scholar
  3. Jacob RE, Chang YV, Choong CK, Bierhals A, Hu DZ, Yablonskiy DA, Woods JC, Gierada DS, Conradi MS (2005) 19F MR imaging of ventilation and diffusion in excised lungs. Magn Reson Med 54:577–585PubMedGoogle Scholar
  4. Kuethe DO, Caprihan A, Fukushima E, Waggoner RA (1998) Imaging lungs using inert fluorinated gases. Magn Reson Med 39: 85–88PubMedGoogle Scholar
  5. Kuethe DO, Caprihan A, Gach HM, Lowe IL, Fukushima E (2000) Imaging of obstructed ventilation with NMR using inert fluorinated gases. J Appl Physiol 88:2279–2286PubMedGoogle Scholar
  6. Mohanty S, Bernstein HJ (1970) Fluorine relaxation by NMR absorption in gaseous CF4, SiF4, and SF6. J Chem Phys 53:461–462Google Scholar
  7. Rinck PA, Petersen SB, Lauterbur PS (1984) NMR imaging of fluorine-containing substances. 19-fluorine ventilation and perfusion studies. Fortschr Röntgenstr 140:239–243Google Scholar
  8. Ruiz-Cabello J, Perez-Sanchez JM, Perez de Alejo R, Rodriguez I, Gonzalez-Mangado N, Peces-Barba G, Cortijo M (2005) Diffusion-weighted 19F-MRI of lung periphery: influence of pressure and air-SF6 composition on apparent diffusion coefficients. Resp Physiol Neurobiol 148:43–56Google Scholar
  9. Schreiber WG, Eberle B, Laukemper-Ostendorf S, Markstaller K, Weiler N, Scholz A, Bürger K, Heussel CP, Thelen M, Kauczor HU (2001) Dynamic 19F-MRI of pulmonary ventilation using sulfur hexafluoride (SF6) gas. Magn Reson Med 45:605–613PubMedGoogle Scholar
  10. Wolf U, Scholz A, Heussel CP, Markstaller K, Schreiber WG (2006) Subsecond fluorine-19 MRI of the lung. Magn Reson Med 55:948–951PubMedGoogle Scholar
  11. Wolf U, Scholz A, Terekhov M, Münnemann K, Kreitner KF, Werner C, Düber C, Schreiber WG (2008) Fluorine-19 MRI of the lung. First human experiment (submitted)Google Scholar

Section 4.4

  1. Abolmaali ND, Schmitt J, Krauss S, Bretz F, Deimling M, Jacobi V, Vogl TJ (2004) MR imaging of lung parenchyma at 0.2 T: evaluation of imaging techniques, comparative study with chest radiography and interobserver analysis. Eur Radiol 14:703–708PubMedGoogle Scholar
  2. Arnold JF, Fidler F, Wang T, Pracht ED, Schmidt M, Jakob PM (2004) Imaging lung function using rapid dynamic acquisition of T1-maps during oxygen enhancement. MAGMA 16:246–253PubMedGoogle Scholar
  3. Arnold JF, Kotas M, Fidler F, Pracht ED, Flentje M, Jakob PM (2007) Quantitative regional oxygen transfer imaging of the human lung. J Magn Reson Imaging 26:637–645PubMedGoogle Scholar
  4. Bankier AA, O’Donnell CR, Mai VM, Storey P, De Maertelaer V, Edelman RR, Chen Q (2004) Impact of lung volume on MR signal intensity changes of the lung parenchyma. J Magn Reson Imaging 20:961–966PubMedGoogle Scholar
  5. Berthezene Y, Vexler V, Clement O, Muhler A, Moseley ME, Brasch RC (1992) Contrast-enhanced MR imaging of the lung: assessments of ventilation and perfusion. Radiology 183:667–672PubMedGoogle Scholar
  6. Berthezène Y, Mühler A, Lang P, Shames DM, Clément O, Rosenau W, Kuwatsuru R, Brasch RC (1993) Safety aspects and pharmacokinetics of inhaled aerosolized gadolinium. J Magn Reson Imaging 3:125–130PubMedGoogle Scholar
  7. Chen Q, Jakob PM, Griswold MA, Levin DL, Hatabu H, Edelman RR (1998) Oxygen enhanced MR ventilation imaging of the lung. MAGMA 7:153–161PubMedGoogle Scholar
  8. Chen Q, Mai VM, Bankier AA, Napadow VJ, Gilbert RJ, Edelman RR (2001) Ultrafast MR grid-tagging sequence for assessment of local mechanical properties of the lungs. Magn Reson Med 45:24–28PubMedGoogle Scholar
  9. Dietrich O (2007a) Single-shot pulse sequences. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin Heidelberg New York, pp 119–126Google Scholar
  10. Dietrich O (2007b) Oxygen-enhanced imaging of the lung. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin Heidelberg New York, pp 429–440Google Scholar
  11. Dietrich O, Losert C, Attenberger U, Fasol U, Peller M, Nikolaou K, Reiser MF, Schoenberg SO (2005) Fast oxygen-enhanced multislice imaging of the lung using parallel acquisition techniques. Magn Reson Med 53:1317–1325PubMedGoogle Scholar
  12. Dietrich O, Losert C, Attenberger U, Reuter C, Fasol U, Peller M, Nikolaou K, Reiser MF, Schoenberg SO (2006a) Sauerstoff-MRT der Lunge: Optimierte Berechnung von Differenzbildern. Radiologe 46:300–308Google Scholar
  13. Dietrich O, Raya JG, Fasol U, Peller M, Reiser MF, Schoenberg SO (2006b) Oxygen-enhanced MRI of the lung at 3 Tesla: feasibility and T1 relaxation times. Proc Intl Soc Magn Reson Med 14:1307Google Scholar
  14. Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239PubMedGoogle Scholar
  15. Eibel R (2007) Lung imaging. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin Heidelberg New York, pp 209–217Google Scholar
  16. Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU (2007) Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 64:329-334PubMedGoogle Scholar
  17. Gee J, Sundaram T, Hasegawa I, Uematsu H, Hatabu H (2003) Characterization of regional pulmonary mechanics from serial magnetic resonance imaging data. Acad Radiol 10:1147–1152PubMedGoogle Scholar
  18. Griswold MA, Jakob PM, Chen Q, Goldfarb JW, Manning WJ, Edelman RR, Sodickson DK (1999) Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41:1236–1245PubMedGoogle Scholar
  19. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedGoogle Scholar
  20. Haage P, Adam G, Misselwitz B, Karaagac S, Pfeffer JG, Glowinski A, Döhmen S, Tacke J, Günther RW (2000) Aerosoliertes Gadolinium-DTPA zur Darstellung der Lungenventilation in der Magnetresonanztomographie. Rofo 172:323–328PubMedGoogle Scholar
  21. Haage P, Adam G, Karaagac S, Pfeffer J, Glowinski A, Döhmen S, Günther RW (2001a) Mechanical delivery of aerosolized gadolinium-DTPA for pulmonary ventilation assessment in MR imaging. Invest Radiol 36:240–243Google Scholar
  22. Haage P, Karaagac S, Adam G, Glowinski A, Günther RW (2001b) Comparison of aerosolized gadoteridol and gadopentetate dimeglumine for magnetic resonance ventilation imaging of the lung. Magn Reson Med 46:803–806Google Scholar
  23. Haage P, Karaagac S, Adam G, Spüntrup E, Pfeffer J, Günther RW (2002) Gadolinium containing contrast agents for pulmonary ventilation magnetic resonance imaging: preliminary results. Invest Radiol 37:120–125PubMedGoogle Scholar
  24. Haage P, Karaagac S, Spüntrup E, Adam G, Günther RW (2003) MR-Bildgebung der Lungenventilation mittels aerosolierter Gadolinium-Chelate. Fortschr Roentgenstr 175:187–193Google Scholar
  25. Haage P, Karaagac S, Spuntrup E, Truong HT, Schmidt T, Gunther RW (2005) Feasibility of pulmonary ventilation visualization with aerosolized magnetic resonance contrast media. Invest Radiol 40:85–88PubMedGoogle Scholar
  26. Heidemann RM, Griswold MA, Kiefer B, Nittka M, Wang J, Jellus V, Jakob PM (2003) Resolution enhancement in lung 1H imaging using parallel imaging methods. Magn Reson Med 49:391–394PubMedGoogle Scholar
  27. Huang MQ, Ye Q, Williams DS, Ho C (2002) MRI of lungs using partial liquid ventilation with water-in-perfluorocarbon emulsions. Magn Reson Med 48:487–492PubMedGoogle Scholar
  28. Huang MQ, Basse PH, Yang Q, Horner JA, Hichens TK, Ho C (2004) MRI detection of tumor in mouse lung using partial liquid ventilation with a perfluorocarbon-in-water emulsion. Magn Reson Imaging 22:645–652PubMedGoogle Scholar
  29. Jakob PM, Hillenbrand CM, Wang T, Schultz G, Hahn D, Haase A (2001) Rapid quantitative lung 1H T1 mapping. J Magn Reson Imaging 14:795–799PubMedGoogle Scholar
  30. Jakob PM, Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D (2004) Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 51:1009–1016PubMedGoogle Scholar
  31. Larkman DJ, Nunes RG (2007) Parallel magnetic resonance imaging. Phys Med Biol 52:R15–55PubMedGoogle Scholar
  32. Ley S, Puderbach M, Risse F, Ley-Zaporozhan J, Eichinger M, Takenaka D, Kauczor HU, Bock M (2007) Impact of oxygen inhalation on the pulmonary circulation: assessment by magnetic resonance (MR)-perfusion and MR-flow measurements. Invest Radiol 42:283–290PubMedGoogle Scholar
  33. Loffler R, Muller CJ, Peller M, Penzkofer H, Deimling M, Schwaiblmair M, Scheidler J, Reiser M (2000) Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magn Reson Med 43:860–866PubMedGoogle Scholar
  34. Losert C, Nikolaou K, Scheidler J, Mueller CJ, Schwaiblmair M, Reiser MF (2002) Optimized respiratory and ECG gating in oxygen-enhanced MR ventilation imaging of the lung. Proc Intl Soc Mag Reson Med 10:1971Google Scholar
  35. Lowe KC (1987) Perfluorocarbons as oxygen-transport fluids. Comp Biochem Physiol A 87:825–838PubMedGoogle Scholar
  36. Mai VM, Chen Q, Li W, Hatabu H, Edelman RR (2000) Effect of respiratory phases on MR lung signal intensity and lung conspicuity using segmented multiple inversion recovery turbo spin echo (MIR-TSE). Magn Reson Med 43:760–763PubMedGoogle Scholar
  37. Mai VM, Liu B, Li W, Polzin J, Kurucay S, Chen Q, Edelman RR (2002) Influence of oxygen flow rate on signal and T(1) changes in oxygen-enhanced ventilation imaging. J Magn Reson Imaging 16:37–41PubMedGoogle Scholar
  38. Mai VM, Tutton S, Prasad PV, Chen Q, Li W, Chen C, Liu B, Polzin J, Kurucay S, Edelman RR (2003) Computing oxygen-enhanced ventilation maps using correlation analysis. Magn Reson Med 49:591–594PubMedGoogle Scholar
  39. Marcus JT, Korporaal JG, Rietema H, Boonstra A, Vonk Noordegraaf A (2007) MRI estimation of dynamic regional lung ventilation, derived from pulmonary density changes during respiration. Proc Intl Soc Mag Reson Med 15:2777Google Scholar
  40. Misselwitz B, Mühler A, Heinzelmann I, Böck JC, Weinmann HJ (1997) Magnetic resonance imaging of pulmonary ventilation. Initial experiences with a gadolinium-DTPA-based aerosol. Invest Radiol 32:797–801PubMedGoogle Scholar
  41. Molinari F, Gaudino S, Fink C, Corbo GM, Valente S, Pirronti T, Bonomo L (2006) Simultaneous cardiac and respiratory synchronization in oxygen-enhanced magnetic resonance imaging of the lung using a pneumotachograph for respiratory monitoring. Invest Radiol 41:476–485PubMedGoogle Scholar
  42. Molinari F, Eichinger M, Risse F, Plathow C, Puderbach M, Ley S, Herth F, Bonomo L, Kauczor HU, Fink C (2007) Navigator-triggered oxygen-enhanced MRI with simultaneous cardiac and respiratory synchronization for the assessment of interstitial lung disease. J Magn Reson Imaging 26:1523–1529PubMedGoogle Scholar
  43. Montgomery AB, Paajanen H, Brasch RC, Murray JF (1987) Aerosolized gadolinium-DTPA enhances the magnetic resonance signal of extravascular lung water. Invest Radiol 22:377–381PubMedGoogle Scholar
  44. Muller CJ, Loffler R, Deimling M, Peller M, Reiser M (2001) MR lung imaging at 0.2 T with T1-weighted true FISP: native and oxygen-enhanced. J Magn Reson Imaging 14:164–168PubMedGoogle Scholar
  45. Muller CJ, Schwaiblmair M, Scheidler J, Deimling M, Weber J, Loffler RB, Reiser MF (2002) Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary findings. Radiology 222:499–506PubMedGoogle Scholar
  46. Naish JH, Parker GJ, Beatty PC, Jackson A, Young SS, Waterton JC, Taylor CJ (2005) Improved quantitative dynamic regional oxygen-enhanced pulmonary imaging using image registration. Magn Reson Med 54:464–469PubMedGoogle Scholar
  47. Nakagawa T, Sakuma H, Murashima S, Ishida N, Matsumura K, Takeda K (2001) Pulmonary ventilation-perfusion MR imaging in clinical patients. J Magn Reson Imaging 14:419–424PubMedGoogle Scholar
  48. Napadow VJ, Mai V, Bankier A, Gilbert RJ, Edelman R, Chen Q (2001) Determination of regional pulmonary parenchymal strain during normal respiration using spin inversion tagged magnetization MRI. J Magn Reson Imaging 13:467–474PubMedGoogle Scholar
  49. Ogasawara N, Suga K, Kawakami Y, Yamashita T, Zaki M, Matsunaga N (2004) Assessment of regional lung function impairment in airway obstruction and pulmonary embolic dogs with combined noncontrast electrocardiogram-gated perfusion and gadolinium diethylenetriaminepentaacetic acid aerosol magnetic resonance images. J Magn Reson Imaging 20:46–55PubMedGoogle Scholar
  50. Ohno Y, Hatabu H, Takenaka D, Adachi S, Van Cauteren M, Sugimura K (2001) Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol 177:185–194PubMedGoogle Scholar
  51. Ohno Y, Hatabu H, Takenaka D, Van Cauteren M, Fujii M, Sugimura K (2002) Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med 47:1139–1144PubMedGoogle Scholar
  52. Ohno Y, Oshio K, Uematsu H, Nakatsu M, Gefter WB, Hatabu H (2004) Single-shot half-Fourier RARE sequence with ultra-short inter-echo spacing for lung imaging. J Magn Reson Imaging 20:336–339PubMedGoogle Scholar
  53. Ohno Y, Hatabu H, Higashino T, Nogami M, Takenaka D, Watanabe H, Van Cauteren M, Yoshimura M, Satouchi M, Nishimura Y, Sugimura K (2005) Oxygen-enhanced MR imaging: correlation with postsurgical lung function in patients with lung cancer. Radiology 236:704–711PubMedGoogle Scholar
  54. Pracht ED, Arnold JF, Wang T, Jakob PM (2005) Oxygen-enhanced proton imaging of the human lung using T2*. Magn Reson Med 53:1193–1196PubMedGoogle Scholar
  55. Price A, Prior M, Busza A, Morris P (2004) Single point imaging (SPI) of lung tissue. Proc Intl Soc Mag Reson Med 12:858Google Scholar
  56. Price A, White A, Busza A, Morris P (2005) Gadolinium enhanced SPI to assess lung ventilation. Proc Intl Soc Mag Reson Med 13:45Google Scholar
  57. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedGoogle Scholar
  58. Puderbach M, Ohno Y, Kawamitsu H, Koyama H, Takenaka D, Nogami M, Obara M, Van Cauteren M, Kauczor HU, Sugimura K (2007) Influence of inversion pulse type in assessing lung-oxygen-enhancement by centrically-reordered non-slice-selective inversion-recovery half-Fourier single-shot turbo spin-echo (HASTE) sequence. J Magn Reson Imaging 26:1133–1138PubMedGoogle Scholar
  59. Rupprecht T, Böwing B, Kuth R, Deimling M, Rascher W, Wagner M (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12:2752–2756PubMedGoogle Scholar
  60. Rupprecht T, Kuth R, Deimling M, Wagner M (2003) Functional lung imaging by MRI – is there a simple solution for a complex problem? Proc Intl Soc Mag Reson Med 11:1371Google Scholar
  61. Schoenberg SO, Dietrich O, Reiser MF (eds) (2007) Parallel imaging in clinical MR applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  62. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedGoogle Scholar
  63. Stock KW, Chen Q, Morrin M, Hatabu H, Edelman RR (1999) Oxygen-enhanced magnetic resonance ventilation imaging of the human lung at 0.2 and 1.5 T. J Magn Reson Imaging 9:838–841PubMedGoogle Scholar
  64. Suga K, Ogasawara N, Okada M, Matsunaga N, Arai M (2002a) Regional lung functional impairment in acute airway obstruction and pulmonary embolic dog models assessed with gadolinium-based aerosol ventilation and perfusion magnetic resonance imaging. Invest Radiol 37:281–291Google Scholar
  65. Suga K, Ogasawara N, Tsukuda T, Matsunaga N (2002b) Assessment of regional lung ventilation in dog lungs with Gd-DTPA aerosol ventilation MR imaging. Acta Radiol 43:282–291Google Scholar
  66. Suga K, Yuan Y, Ogasawara N, Tsukuda T, Matsunaga N (2003) Altered clearance of gadolinium diethylenetriaminepentaacetic acid aerosol from bleomycin-injured dog lungs: initial observations. Am J Respir Crit Care Med 167:1704–1710PubMedGoogle Scholar
  67. Sundaram TA, Gee JC (2005) Towards a model of lung biomechanics: pulmonary kinematics via registration of serial lung images. Med Image Anal 9:524–537PubMedGoogle Scholar
  68. Topf HG, Wagner M, Kuth R, Kreisler P, Deimling M, Geiger B, Chefd’hotel C, Rupprecht T (2004) Measuring quantitative regional lung ventilation by alveolar ventilation imaging (AVI) – phantom data and results of a feasibility study in 50 patients. Proc Intl Soc Mag Reson Med 12:671Google Scholar
  69. Topf HG, Zapke M, Kuth R, Kreisler P, Deimling M, Geiger B, Chefd’hotel C, Rupprecht T (2005) 1.5 Tesla can do too – measuring quantitative regional lung ventilation by AVI (alveolar ventilation imaging) – phantom data and results of a feasibility study in 10 patients. Proc Intl Soc Mag Reson Med 13:46Google Scholar
  70. Topf HG, Biondetti P, Zapke M, Kuth R, Deimling M, Chefd’hotel C, Geiger B, Rupprecht T (2006) Quantitative regional lung ventilation – results in 15 single lung transplanted patients. Proc Intl Soc Mag Reson Med 14:1660Google Scholar
  71. Vaninbroukx J, Bosmans H, Sunaert S, Demedts M, Delcroix M, Marchal G, Verschakelen J (2003) The use of ECG and respiratory triggering to improve the sensitivity of oxygen-enhanced proton MRI of lung ventilation. Eur Radiol 13:1260–1265PubMedGoogle Scholar
  72. Voorhees A, An J, Berger KI, Goldring RM, Chen Q (2005) Magnetic resonance imaging-based spirometry for regional assessment of pulmonary function. Magn Reson Med 54:1146–1154PubMedGoogle Scholar
  73. Wagner M, Böwing B, Kuth R, Deimling M, Rascher W, Rupprecht T (2001) Low field thoracic MRI – a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983PubMedGoogle Scholar
  74. Zapke M, Topf HG, Zenker M, Kuth R, Deimling M, Kreisler P, Rauh M, Chefd’hotel C, Geiger B, Rupprecht T (2006) Magnetic resonance lung function – a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial. Respir Res 7:106PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jim M. Wild
    • 1
  • F. William Hersman
    • 2
  • Samuel Patz
    • 3
  • Iga Muradian
    • 4
  • Mirko I. Hrovat
    • 5
  • Hiroto Hatabu
    • 4
  • James P. Butler
    • 6
  • Wolfgang G. Schreiber
    • 7
  • Olaf Dietrich
    • 8
  1. 1.Unit of Academic RadiologyUniversity of SheffieldSheffieldUK
  2. 2.Department of PhysicsUniversity of New HampshireDurhamUSA
  3. 3.Center of Pulmonary Functional ImagingBrigham and Women’s HospitalBostonUSA
  4. 4.Department of Radiology, Harvard Medical School, Center of Pulmonary Functional ImagingBrigham and Women’s HospitalBostonUSA
  5. 5.Mirtech, Inc.BrocktonUSA
  6. 6.Department Environmental Health Harvard School of Public Health and Department of MedicineHarvard Medical SchoolBostonUSA
  7. 7.Section of Medical Physics, Department of RadiologyMainz University HospitalMainzGermany
  8. 8.Josef Lissner Laboratory for Biomedical Imaging, Department of Clinical Radiology, University Hospitals – GrosshadernLudwig Maximilian University of MunichMunichGermany

Personalised recommendations