Nanoscale Studies of Domain Walls in Epitaxial Ferroelectric Thin Films

  • Patrycja Paruch
  • Thierry Giamarchi
  • Jean-Marc Triscone
Part of the Topics in Applied Physics book series (TAP, volume 105)

Abstract

Nanoscale ferroelectric domains in epitaxial Pb(Zr0.2Ti0.8)O3 thin films were investigated using atomic force microscopy to allow the static roughness configuration and dynamic response of ferroelectric domain walls in these materials to be accessed. The observed dependence of domain size on writing time revealed a two-step switching process in which nucleation under the atomic force microscope tip is followed by radial domain growth. We obtained a non-linear dependence of domain wall velocity on the electric field, v ∝ exp−(1∕E)μ, characteristic of a creep process. The domain wall motion was analyzed both in the context of stochastic nucleation in a periodic potential as well as that of an elastic manifold in a disorder potential, in better agreement with the dimensionality of the system and the values of the dynamic exponent ∼ 0.6. Independent measurements of domain wall roughness in the same films revealed a power law growth of the correlation function of relative displacements B(L) ∝ L with ζ ∼ 0.26 at short length scales L, followed by an apparent saturation at large L. These results give rise to a clear physical picture of domain walls in ferroelectrics as elastic sheets in the presence of “random-bond” disorder, and where dipolar interactions play an important role, effectively increasing the dimensionality of the system to 2.5, in agreement with theoretical predictions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Scott, C. A. P. {de Araujo}: Ferroelectric memories, Science 246, 1400 (1989) CrossRefGoogle Scholar
  2. R. Waser, A. R{\ü}diger: Ferroelectrics: {Pushing} towards the digital storage limit, Nature Mater. 3, 81 (2004) CrossRefGoogle Scholar
  3. A. K. S. Kumar, P. Paruch, J. M. Triscone, W. Daniau, S. Ballandras, L. Pellegrino, D. Marr{\'e}, T. Tybell: High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers, Appl. Phys. Lett. 85, 1757 (2004) CrossRefGoogle Scholar
  4. C. Caliendo, I. Fratoddi, M. V. Russo: Sensitivity of a platinum-polyyne-based sensor to low relative humidity and chemical vapors, Appl. Phys. Lett. 80, 4849 (2002) CrossRefGoogle Scholar
  5. T. Giamarchi, A. B. Kolton, A. Rosso: Dynamics of disordered elastic systems, in M. C. Miguel, J. M. Rubi (Eds.): Jamming, Yielding and Irreversible Deformation in Condensed Matter (Springer, Berlin 2006) p. 91, cond-mat/0503437 Google Scholar
  6. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur: Vortices in high-temperature superconductors, Rev. Mod. Phys. 66, 1125 (1994) CrossRefGoogle Scholar
  7. T. Tybell, P. Paruch, T. Giamarchi, J.-M. Triscone: Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films, Phys. Rev. Lett. 89, 097601 (2002) CrossRefGoogle Scholar
  8. P. Paruch, T. Giamarchi, T. Tybell, J.-M. Triscone: Nanoscale studies of domain wall motion in ferroelectric thin films, J. Appl. Phys. 100, 051608 (2006) Google Scholar
  9. P. Paruch, T. Giamarchi, J.-M. Triscone: Domain wall roughness in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films, Phys. Rev. Lett. 94, 197601 (2005) CrossRefGoogle Scholar
  10. B. Meyer, D. Vanderbilt: Ab initio study of ferroelectronic domain walls in PbTiO3, Phys. Rev. B 65, 104111 (2002) CrossRefGoogle Scholar
  11. T. Nattermann, S. Scheidl: Vortex glass phases in type-{II} superconductors, Adv. Phys. 49, 607 (2000) CrossRefGoogle Scholar
  12. T. Giamarchi, S. Bhattacharya: Vortex phases, in C. Berthier, et al. (Eds.): High Magnetic Fields: {Applications} in Condensed Matter Physics and Spectroscopy (Springer, Berlin 2002) p. 314, cond-mat/0111052 Google Scholar
  13. G. Gr{\ü}ner: The dynamics of charge density waves, Rev. Mod. Phys. 60, 1129 (1988) CrossRefGoogle Scholar
  14. T. Nattermann, S. Brazovskii: Pinning and sliding of driven elastic systems: {From} domain walls to charge density waves, Adv. Phys. 53, 177 (2004) CrossRefGoogle Scholar
  15. E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris, B. Etienne: Observation of a magnetically induced wigner solid, Phys. Rev. Lett. 60, 2765 (1988) CrossRefGoogle Scholar
  16. T. Giamarchi: Electronic glasses, in S. I. {di Fisica} (Ed.): Quantum Phenomena in Mesoscopic System (IOS, Amsterdam 2003) cond-mat/0403531 Google Scholar
  17. M. Kardar: Dynamic scaling phenomena in growth processes, Physica B 221, 60 (1996) CrossRefGoogle Scholar
  18. D. Wilkinson, J. F. Willemsen: Invasion percolation: {A} new form of percolation theory, J. Phys. A 16, 3365 (1983) CrossRefGoogle Scholar
  19. S. Lemerle, J. Ferr{\'e}, C. Chappert, V. Mathet, T. Giamarchi, P. {Le Doussal}: Domain wall creep in an ising ultrathin magnetic film, Phys. Rev. Lett. 80, 849 (1998) CrossRefGoogle Scholar
  20. V. Repain, M. Bauer, J. P. Jamet, J. Ferr{\'e}, A. Mougin, C. Chappert, H. Bernas: Creep motion of a magnetic wall: {Avalanche} size divergence, Europhys. Lett. 68, 460 (2004) CrossRefGoogle Scholar
  21. D. A. Huse, C. L. Henley: Pinning and roughening of domain walls in ising systems due to random impurities, Phys. Rev. Lett. 54, 2708 (1985) CrossRefGoogle Scholar
  22. M. Kardar, D. R. Nelson: Commensurate-incommensurate transitions with quenched random impurities, Phys. Rev. Lett. 55, 1157 (1985) CrossRefGoogle Scholar
  23. D. A. Huse, C. L. Henley, D. S. Fisher: Huse, {H}enley and {F}isher respond., Phys. Rev. Lett. 55, 2924 (1985) CrossRefGoogle Scholar
  24. D. E. Wolf, J. Kert{\'e}sz: Surface width exponents for three- and four-dimensional eden growth, Europhys. Lett. 4, 651 (1987) Google Scholar
  25. B. M. Forrest, L. H. Tang: Surface roughening in a hypercube-stacking model, Phys. Rev. Lett. 64, 1405 (1990) CrossRefGoogle Scholar
  26. P. W. Anderson, Y. B. Kim: Hard superconductivity: {Theory} of the motion of {A}brikosov flux lines, Rev. Mod. Phys. 36, 39 (1964) CrossRefGoogle Scholar
  27. L. B. Ioffe, V. M. Vinokur: Dynamics of interfaces and dislocations in disordered media, J. Phys. C 20, 6149 (1987) CrossRefGoogle Scholar
  28. T. Nattermann: Interface roughening in systems with quenched random impurities, Europhys. Lett. 4, 1241 (1987) Google Scholar
  29. P. Chauve, T. Giamarchi, P. {Le Doussal}: Creep and depinning in disordered media, Phys. Rev. B 62, 6241 (2000) CrossRefGoogle Scholar
  30. D. T. Fuchs, E. Zeldov, T. Tamegai, S. Ooi, M. Rappaport, H. Shtrikman: Possible new vortex matter phases in O8, Phys. Rev. Lett. 80, 4971 (1998) CrossRefGoogle Scholar
  31. W. J. Merz: Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev. 95, 690 (1954) CrossRefGoogle Scholar
  32. F. Fatuzzo, W. J. Merz: Switching mechanism in triglycine sulfate and other ferroelectrics, Phys. Rev. 116, 61 (1959) CrossRefGoogle Scholar
  33. R. C. Miller, G. Weinreich: Mechanism for the sidewise motion of \unit{180}{\degree} domain walls in barium titanate, Phys. Rev. 117, 1460 (1960) CrossRefGoogle Scholar
  34. V. Likodimos, M. Labardi, M. Allegrini: Kinetics of ferroelectric domains investigated by scanning force microscopy, Phys. Rev. B 61, 14440 (2000) CrossRefGoogle Scholar
  35. V. Likodimos, M. Labardi, M. Allegrini: Domain pattern formation and kinetics on ferroelectric surfaces under thermal cycling using scanning force microscopy, Phys. Rev. B 66, 024104 (2002) CrossRefGoogle Scholar
  36. D. Damjanovic: Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric-ferroelastic domain walls, Phys. Rev. B 55, R649 (1997) CrossRefGoogle Scholar
  37. D. V. Taylor, D. Damjanovic: Domain wall pinning contribution to the nonlinear dielectric permittivity in {P}b({Z}r,{T}i){O}_3 thin films, Appl. Phys. Lett. 73, 2045 (1998) CrossRefGoogle Scholar
  38. V. Mueller, Y. Shchur, H. Beige, S. Mattauch, J. Glinnemann, G. Heger: Dielectric dispersion due to weak domain wall pinning in PO4, Phys. Rev. B 65, 134102 (2002) CrossRefGoogle Scholar
  39. P. Paruch, T. Tybell, J.-M. Triscone: Nanoscale control of ferroelectric polarization and domain size in epitaxial PbZr0.2Ti0.8O3 thin films, Appl. Phys. Lett. 79, 530 (2001) CrossRefGoogle Scholar
  40. K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh, Y. Cho: Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal, Appl. Phys. Lett. 82, 433 (2003) CrossRefGoogle Scholar
  41. S. V. Kalinin, D. A. Bonnell: Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63, 125411 (2001) CrossRefGoogle Scholar
  42. T. Emig, T. Nattermann: Disorder driven roughening transitions of elastic manifolds and periodic elastic media, Eur. Phys. J. B 8, 525 (1999) CrossRefGoogle Scholar
  43. A. I. Larkin: Effect of inhomogeneities on structure of mixed state of superconductors, Sov. Phys. JETP 31, 784 (1970) Google Scholar
  44. A. I. Larkin, Y. N. Ovchinnikov: Pinning in type-{II} superconductors, J. Low Temp. Phys 34, 409 (1979) CrossRefGoogle Scholar
  45. S. P{\ö}ykk{\ö}, D. J. Chadi: Ab initio study of \unit{180}{\degree} domain wall energy and structure in PbTiO3, Appl. Phys. Lett. 75, 2830 (1999) CrossRefGoogle Scholar
  46. T. Nattermann: The incommensurate-commensurate transition in random-field model, J. Phys. C 16, 4125 (1983) CrossRefGoogle Scholar
  47. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, Y. Rosenwaks: Ferroelectric domain breakdown, Phys. Rev. Lett. 90, 107601 (2003) CrossRefGoogle Scholar
  48. P. Paruch, J.-M. Triscone: High-temperature ferroelectric domain stability in epitaxial PbZr0.2Ti).8O3 thin films, Appl. Phys. Lett. 88, 162907 (2006) CrossRefGoogle Scholar
  49. R. J. Rodriguez, A. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, K. Kitamura: Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy, Appl. Phys. Lett. 012906 (2005) Google Scholar
  50. T. Braun, W. Kleeman, J. Dec, P. A. Thomas: Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4, Phys. Rev. Lett. 94, 117601 (2005) CrossRefGoogle Scholar
  51. D. R. Taylor, J. T. Love, G. J. Topping, J. G. A. Dane: Crossover from pure to random-field critical susceptibility in KH2As_xP1-xO4, Phys. Rev. B 72, 052109 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Patrycja Paruch
    • 1
    • 2
  • Thierry Giamarchi
    • 1
  • Jean-Marc Triscone
    • 1
  1. 1.DPMCUniversity of GenevaGeneva 4Switzerland
  2. 2.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthaca, NYUSA

Personalised recommendations