Growth and Novel Applications of Epitaxial Oxide Thin Films

  • Agham-Bayan Posadas
  • Mikk Lippmaa
  • Fred J. Walker
  • Matthew Dawber
  • Charles H. Ahn
  • Jean-Marc Triscone
Part of the Topics in Applied Physics book series (TAP, volume 105)


This chapter addresses key developments in the ability to grow epitaxial oxide films and provides examples of possible applications of these structures.


Target Surface Complex Oxide Step Edge Ablation Plume Laser Ablation Deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T. E. Jones, W. C. McGinnis, J. S. Briggs: Compact substrate heater for use in an oxidizing environment, Rev. Sci. Instrum. 65, 977 (1994) Google Scholar
  2. A. Schmehl, R. R. Schulz, J. Mannhart: Eucentric four-axis ultrahigh vacuum goniometer for reflection high-energy electron diffraction applications, Rev. Sci. Instrum. 76, 123901 (2005) Google Scholar
  3. D. B. Lee, G. Simkovich: Oxidation of molybdenum chromium palladium alloys, Oxid. Met. 31, 265 (1989) Google Scholar
  4. I. Zaplatynsky: Volatization of oxides during oxidation of some superalloys at 1200 degrees {C}, Oxid. Met. 11, 289 (1977) Google Scholar
  5. G. R. Wallwork, A. Z. Hed: Some limiting factors in use of alloys at high temperatures, Oxid. Met. 3, 171 (1971) Google Scholar
  6. J. C. Clark, J. P. Maria, K. J. Hubbard, D. G. Schlom: An oxygen-compatible radiant substrate heater for thin film growth at substrate temperatures up to 1050 degrees {C}, Rev. Sci. Instrum. 68, 2538 (1997) Google Scholar
  7. R. C. Estler, N. S. Nogar, R. E. Muenchausen, X. D. Wu, S. Foltyn, A. R. Garcia: A versatile substrate heater for use in highly oxidizing atmospheres, Rev. Sci. Instrum. 62, 437 (1991) Google Scholar
  8. P. Vase, Y. Q. Shen, T. Holst, M. Hagensen, T. Freltoft: Substrate heater for large-area {YBa2Cu3Ox} films growth without electrical feedthroughs, Physica C 235–240, 641 (1994) Google Scholar
  9. M. Orita, H. Ohta, H.Hiramatsu, M. Hirano, S. Den, M. Sasaki, T. Katagiri, H. Mimura, H. Hosono: Pulsed laser deposition system for producing oxide thin films at high temperature, Rev. Sci. Instrum. 72, 3340 (2001) Google Scholar
  10. K. H. Wu, C. L. Lee, J. Y. Juang, T. M. Uen, Y. S. Gou: In-situ growth of {Y1Ba2Cu3O7-x} superconducting thin-films using a pulsed neodymium yttrium-aluminium-garnet laser with {CO2}-laser heated substrates, Appl. Phys. Lett. 58, 1089 (1991) Google Scholar
  11. S. Ohashi, M. Lippmaa, N. Nakagawa, H. Nagasawa, H. Koinuma, M. Kawasaki: Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth, Rev. Sci. Instrum. 70, 178 (1999) Google Scholar
  12. M. Lippmaa, T. Furumochi, S. Ohashi, M. Kawasaki, H. Koinuma, T. Satoh, T. Ishida, H. Nagasawa: High-temperature goniometer for thin film growth and ion scattering studies, Rev. Sci. Instrum. 72, 1755 (2001) Google Scholar
  13. T. Koida, D. Komiyama, H. Koinuma, M. Ohtani, M. Lippmaa, M. Kawasaki: Temperature-gradient epitaxy under in situ growth mode diagnostics by scanning reflection high-energy electron diffraction, Appl. Phys. Lett. 80, 565 (2002) Google Scholar
  14. A. C. Westerheim, B. I. Choi, M. I. Flik, M. J. Cima, R. L. Slattery, A. C. Anderson: Radiative substrate heating for high-{T(C)} superconducting thin-film deposition-film-growth-induced temperature variation, J. Vac. Sci. Technol. 10, 3407 (1992) Google Scholar
  15. A. R. Beavitt: A wide-band particle eliminator, Thin Solid Films 1, 69 (1967) Google Scholar
  16. H. Dupendant, J. P. Gavigan, D. Givord, A. Lienard, J. P. Rebouillat, Y. Souche: Velocity distribution of micronsized particles in thin-film laser ablation deposition {(LAD)} of metals and oxide superconductors, Appl. Surf. Sci. 43, 369 (1989) Google Scholar
  17. A. Tselev, A. Gorbunov, W. Pompe: Cross-beam pulsed laser deposition: {G}eneral characteristic, Rev. Sci. Instrum. 72, 2665 (2001) Google Scholar
  18. C. Doughty, A. T. Findikoglu, T. Venkatesan: Steady-state pulsed-laser deposition target scanning for improved plume stability and reduced particle density, Appl. Phys. Lett. 66, 1276 (1995) Google Scholar
  19. L. Cultrera, D. Guido, A. Perrone, M. I. Zeifman: Plume separation effect in pulsed laser ablation deposition, Appl. Phys. A 79, 1181 (2004) Google Scholar
  20. J. P. Gong, M. Kawasaki, K. Fujito, R. Tsuchiya, M. Yoshimoto, H. Koinuma: Investigation of precipitate formation on laser ablated {YBa2Cu307}-delta thin-films, Phys. Rev. B 50, 3280 (1994) Google Scholar
  21. N. Kanda, M. Kawasaki, T. Kitajima, H. Koinuma: Diagnosis of precipitate formation in pulsed-laser deposition of {YBa2Cu3O7}-delta by means of in situ laser-light scattering and ex situ atomic force microscopy, Phys. Rev. B 56, 8419 (1997) Google Scholar
  22. R. M. V. Rao, H. Munekata, K. Shimada: Quantum paraelectric {La1/2Na1/2TiO3} films as capacitor dielectrics for temperature- and electric-field-insensitive applications, J. Appl. Phys. 88, 3756 (2000) Google Scholar
  23. P. R. Willmott, J. R. Huber: Pulsed laser vaporization and deposition, Rev. Mod. Phys. 72, 315 (2000) Google Scholar
  24. D. B. Chrisey, G. K. Huber (Eds.): Pulsed Laser Deposition of Thin Films (Wiley, New York 1994) Google Scholar
  25. F. G. Will, H. G. {deLorenzi}, K. H. Janora: Conduction mechanism of single-crystal alumina, J. Am. Ceram. Soc. 75, 295 (1992) Google Scholar
  26. R. H. French, D. J. Jones, S. Loughin: Interband electronic-structure of alpha-alumina up to {2167\K}, J. Am. Ceram. Soc 77, 412 (1994) Google Scholar
  27. A. J. Pedraza, J. D. Fowlkes, D. H. Lowndes: Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation, Appl. Phys. Lett. 74, 2322 (1999) Google Scholar
  28. A. Jacquot, B. Lenoir, M. O. Boffoué, A. Dauscher: Influence of target morphology on droplet emission and thickness profiles with pulsed laser deposited bismuth films, Appl. Phys. A 69, S195 (1999) Google Scholar
  29. J. C. Miller, J. R. F. Haglund (Eds.): Laser Ablation and Desorption, vol. 30, Experimental Methods in the Physical Sciences (Academic Press, San Diego 1998) p. 84 Google Scholar
  30. J. M. Huijbregtse, B. Dam, J. H. Hector, R. Griessen: High-quality off-stoichiometric {YBa2Cu3O7}-delta films produced by diffusion-assisted preferential laser ablation, J. Appl. Phys. 86, 6528 (1999) Google Scholar
  31. P. E. Dyer, R. D. Greenough, A. Issa, P. H. Key: Spectroscopic and ion probe measurements of {KRF} laser ablated {y-ba-cu-o} bulk samples, Appl. Phys. Lett. 53, 534 (1988) Google Scholar
  32. M. A. Herman, H. Sitter: Molecular Beam Epitaxy, Fundamentals and Current Status, vol. 7, 2 ed., Springer Series in Materials Science (Springer, Berlin 1996) p. 38 Google Scholar
  33. P. D. Gupta, R. Bhatanagar, D. D. Bhawalkar: Isotopic enhancement in laser-produced plasmas, J. Appl. Phys. 51, 3422 (1980) Google Scholar
  34. P. A. VanRompay, Z. Zhang, J. A. Nees, P. P. Pronko: Isotope separation and enrichment by ultrafast laser ablation, Proc. SPIE 3934, 43 (2000) Google Scholar
  35. P. P. Pronko, P. A. VanRompay, Z. Zhang, J. A. Nees: Isotope enrichment in laser-ablation plumes and commensurately deposited thin films, Phys. Rev. Lett. 83, 2596 (1999) Google Scholar
  36. L. D. Laude, C. Dicara, K. Kolev, H. Schillinger: Excimer laser ablation: {E}nergy or power density? {A} different approach, Proc. SPIE 5448, 144 (2004) Google Scholar
  37. J. F. M. Cillessen, M. J. M. {de Jong}, X. Croize: Improved uniformity of multielement thin films prepared by off-axis pulsed laser deposition using a new heater design, Rev. Sci. Instrum. 67, 3229 (1996) Google Scholar
  38. A. Wong, R. Liang, M. Gardner, W. N. Hardy: Reproducible growth of highly crystalline {YBa2Cu3O7} thin films on {SrTiO3} by scanning pulsed laser deposition, J. Appl. Phys. 82, 3019 (1997) Google Scholar
  39. H.-C. Li, W. Si, A. D. West, X. X. Xi: Near single crystal-level dielectric loss and nonlinearity in pulsed laser deposited {SrTiO3} thin films, Appl. Phys. Lett. 73, 190 (1998) Google Scholar
  40. M. Lippmaa, N. Nakagawa, M. Kawasaki, S. Ohashi, Y. Inaguma, M. Itoh, H. Koinuma: Step-flow growth of {SrTiO3} thin films with a dielectric constant exceeding 10(4), Appl. Phys. Lett. 74, 3543 (1999) Google Scholar
  41. T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, H. Koinuma: Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition, Appl. Phys. Lett. 87, 241919 (2005) Google Scholar
  42. S. K. Hau, K. H. Wong, P. W. Chan, C. L. Choy: Intrinsic resputtering in pulsed-laser deposition of leadzirconate-titanate thin-films, Appl. Phys. Lett. 66, 245 (1995) Google Scholar
  43. B. Dam, J. Rector, M. F. Chang, S. Kars, D. G. Degroot, R. Griessen: Laser-ablation threshold of {YBa2Cu3O6+x}, Appl. Phys. Lett. 65, 1581 (1994) Google Scholar
  44. K. Shibuya, T. Ohnishi, T. Uozumi, M. Lippmaa, H. Koinuma: The effect of annealing on {SrTiO3} field-effect transistor devices, Thin Solid Films 486, 195 (2005) Google Scholar
  45. P. R. Willmott: Deposition of complex multielemental thin films, Prog. Surf. Sci. 76, 163 (2004) Google Scholar
  46. G. Betz, G. K. Wehner: Sputtering of multicomponent materials, Top. Appl. Phys. 52, 11 (1983) Google Scholar
  47. S. M. Rossnagel: Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. A 21, S74 (2003) Google Scholar
  48. A. Matthews: Plasma-based physical vapor deposition surface engineering processes, J. Vac. Sci. Technol. A 21, S224 (2003) Google Scholar
  49. R. A. Baragiola: Sputtering: {S}urvey of observations and derived principles, Philos. Trans. R. Soc. Lond. A 362, 29 (2004) Google Scholar
  50. P. J. Martin: Ion-based methods for optical thin-film deposition, J. Mater. Sci. 21, 1 (1986) Google Scholar
  51. S. M. Rossnagel: Sputter deposition for semiconductor manufacturing, IBM J. Res. Devel. 43, 163 (1999) Google Scholar
  52. U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gudmundsson: Ionized physical vapor deposition {(IPVD)}: {A} review of technology and applications, Thin Solid Films 513, 1 (2006) Google Scholar
  53. M. V. {Ramana Murty}: Sputtering: {T}he material erosion tool, Surf. Sci. 500, 523 (2002) Google Scholar
  54. V. S. Smentkowski: Trends in sputtering, Prog. Surf. Sci. 64, 1 (2000) Google Scholar
  55. P. Sigmund: Sputtering by ion bombardment theoretical concepts, Top. Appl. Phys. 47, 9 (1979) Google Scholar
  56. H.-U. Habermeier, G. Beddies, B. Leibold, G. H. Lu, G. Wagner: {Y-Ba-Cu-O} high-temperature superconductor thin-film preparation by pulsed laser deposition and {RF}-sputtering – {A} comparative study, Physica C 180, 17 (1991) Google Scholar
  57. E. Kawamura, V. Vahedi, M. A. Lieberman, C. K. Birdsall: Ion energy distributions in {RF} sheaths; review, analysis and simulation, Plasma Sources Sci. Technol. 8, R45 (1999) Google Scholar
  58. L. Fabrega, E. Koller, J. M. Triscone, O. Fischer: Epitaxial growth of "infinite layer" thin films and multilayers by {RF} magnetron sputtering, J. Mater. Res. 13, 2195 (1998) Google Scholar
  59. J. M. E. Harper: Particle bombardment effects in thin film deposition, in O. Auciello, A. Gras-Marti, J. A. Valles-Abarca, D. L. Flamm (Eds.): Plasma Surface Interactions and Processing of Materials (Kluwer Academic, Amsterdam 1990) p. 251 Google Scholar
  60. C. B. Eom, J. Z. Sun, B. M. Lairson, S. K. Streiffer, A. F. Marshall, K. Yamamoto, S. M. Anlage, J. C. Bravman, T. H. Geballe: Synthesis and properties of {YBa2Cu3O7} thin-films grown insitu by 90-degrees off-axis single magnetron sputtering, Physica C 171, 354 (1990) Google Scholar
  61. M. Stepanova, S. K. Dew: Estimates of differential sputtering yields for deposition applications, J. Vac. Sci. Technol. A 19, 2805 (2001) Google Scholar
  62. J. A. Thornton: Magnetron sputtering – {B}asic physics and application to cylindrical magnetrons, J. Vac. Sci. Technol. 15, 171 (1978) Google Scholar
  63. P. J. Kelly, R. D. Arnell: Magnetron sputtering: {A} review of recent developments and applications, Vacuum 56, 159 (1999) Google Scholar
  64. I. Petrov, F. Adibi, J. E. Greene, W. D. Sproul, W. D. Munz: Use of an externally applied magnetic-field to control ion neutral flux ratios incident at the substrate during magnetron sputter deposition, J. Vac. Sci. Technol. A 10, 3283 (1992) Google Scholar
  65. C. R. Aita: Tailored ceramic film growth at low temperature by reactive sputter deposition, Rev. Solid State Mater. Sci. 23, 205 (1998) Google Scholar
  66. J. Musil, P. Baroch, J. Vlcek, K. H. Nam, J. G. Han: Reactive magnetron sputtering of thin films: {P}resent status and trends, Thin Solid Films 475, 208 (2005) Google Scholar
  67. D. W. Pashley: The study of epitaxy on thin surface films, Adv. Phys. 5, 173 (1956) Google Scholar
  68. J. C. Woicik, H. Li, P. Zschack, E. Karapetrova, P. Ryan, C. R. Ashman, C. S. Hellberg: Anomalous lattice expansion of coherently strained {SrTiO3} thin films grown on {Si(001)} by kinetically controlled sequential deposition, Phys. Rev. B 73, 024112 (2006) Google Scholar
  69. T. B. Massalski: Binary Alloy Phase Diagrams (American Society for Metals, Ohio 1986) Google Scholar
  70. C. D. Theis, D. G. Schlom: Cheap and stable titanium source for use in oxide molecular beam epitaxy systems, J. Vac. Sci. Technol. A 14, 2677 (1996) Google Scholar
  71. S. Nayak, D. E. Savage, H. N. Chu, M. G. Lagally, T. F. Kuech: In situ {RHEED} and {AFM} investigation of growth front morphology evolution of {Si(001)} grown by {UHV-CVD}, J. Cryst. Growth 157, 168 (1995) Google Scholar
  72. A. Y. Cho: Growth of periodic structures by molecular-beam method, Appl. Phys. Lett. 19, 467 (1971) Google Scholar
  73. M. H. Yang, C. P. Flynn: Growth of alkali-halides from molecular-beams – global growth-characteristics, Phys. Rev. Lett. 62, 2476 (1989) Google Scholar
  74. M. W. {Chase, Jr.}: NIST-JANAF Thermochemical Tables, 4 ed. (NIST,AIP, 1998) Google Scholar
  75. F. J. Walker, R. A. McKee: High temperature stability of molecular-beam epitaxy-grown multilayer ceramic composites – {TiO/Ti2O3}, J. Cryst. Growth 116, 235 (1992) Google Scholar
  76. F. B. Wang, J. Li, P. Wang, X. H. Zhu, M. J. Zhang, Z. H. Peng, S. L. Li, L. P. Yong, Y. F. Chen, X. S. Sun, D. N. Zheng: Effect of oxygen content on the transport properties of {LaTiO3+β/2} thin films, J. Phys. Condens. Mattter 18, 5835 (2006) Google Scholar
  77. D. R. Lide: CRC Handbook of Chemistry and Physics (CRC, Boca Raton 1995) Google Scholar
  78. S. A. Chambers: Epitaxial growth and properties of thin film oxides, Surf. Sci. Rep. 39, 105 (2000) Google Scholar
  79. D. D. Berkley, B. R. Johnson, N. Anand, K. M. Beuchamp, L. E. Conroy, A. M. Goldman, J. Maps, K. Mauersberger, M. L. Mecartney, J. Morton, M. Tuominen, Y. J. Zhang: Insitu formation of superconducting {YBa2Cu3O7-x} thin-films using pure ozone vapor oxidation, Appl. Phys. Lett. 53, 1973 (1988) Google Scholar
  80. D. O. Klenov, D. G. Schlom, H. Li, S. Stemmer: The interface between single crystalline (001) {LaAlO3} and (001) silicon, Jpn. J. Appl. Phys 44, L617 (2005) Google Scholar
  81. C. J. Forst, K. Schwarz, P. E. Blochl: Structural and electronic properties of the interface between the high-k oxide {LaAlO3} and {Si(001)}, Phys. Rev. Lett. 95, 137602 (2005) Google Scholar
  82. Y. Kado, Y. Arita: Heteroepitxaial growth of {SRO} films on {Si} substrates, J. Appl. Phys. 61, 2398 (1987) Google Scholar
  83. R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, D. E. Zelmon: Molecular-beam epitaxy of epitaxial barium silicide, barium oxide, and barium-titanate on silicon, Appl. Phys. Lett. 59, 782 (1991) Google Scholar
  84. O. Nakagawara, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata, T. Kawai: Effects of buffer layers in epitaxial growth of {SrTiO3} thin film on {Si(100)}, J. Appl. Phys. 78, 7226 (1995) Google Scholar
  85. F. J. Walker, R. A. McKee, H. W. Yen, D. E. Zelmon: Optical clarity and wave-guide performance of thin-film perovskites on {MGO}, Appl. Phys. Lett. 65, 1495 (1994) Google Scholar
  86. R. A. McKee, F. J. Walker: {P}atent {N}o. 5,693,140 ({S}eptember 18, 1995) Google Scholar
  87. D. Taylor: Thermal expansion data. 1. {B}inary oxides with the sodium chloride and wurtzite structures, Trans. Brit. Ceram. Soc. 83, 5 (1984) Google Scholar
  88. H. R. L. D. K. Smith: Low-temperature thermal expansion of {LiH} {MGO} and {CaO}, J. Appl. Crystallogr. 1, 246 (1968) Google Scholar
  89. L. Liu, W. A. Bassett: Effect of pressure on crystal-structure and lattice parameters of {BaO}, J. Geophys. Res. 77, 4934 (1972) Google Scholar
  90. J. Lettieri, J. H. Haeni, D. G. Schlom: Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon, J. Vac. Sci. Technol. A 20, 1332 (2002) Google Scholar
  91. S. Yadavalli, M. H. Yang, C. P. Flynn: Low-temperature growth of {MGO} by molecular-beam epitaxy, Phys. Rev. B 41, 7961 (1990) Google Scholar
  92. F. J. Walker, R. A. McKee: High-k crystalline gate dielectrics: {A} research perspective, in H. R. Huff, D. C. Gilmer (Eds.): High Dielectric Constant Materials – VLSI MOSFET Applications (Springer, Berlin 2005) p. 607 Google Scholar
  93. M. H. Yang, C. P. Flynn: Growth of alkakli-halides by molecular-beam epitaxy, Phys. Rev. B 41, 8500 (1990) Google Scholar
  94. E. S. Hellman, E. H. Hartford: Epitaxial solid-solution films of immiscible {MGO} and {CaO}, Appl. Phys. Lett. 64, 1341 (1994) Google Scholar
  95. R. Ramesh, V. G. Keramidas: Metal-oxide heterostructures, Annu. Rev. Mater. Sci. 25, 647 (1995) Google Scholar
  96. D. H. Looney: (1957), {P}atent {N}o. 2,791,758 Google Scholar
  97. J. A. Morton: (1957), {US} {P}atent {N}o. 2,791,761 Google Scholar
  98. I. M. Ross: (1957), {US} {P}atent {N}o. 2,791,760 Google Scholar
  99. W. L. Brown: (1957), {US} {P}atent {N}o. 2,791,759 Google Scholar
  100. D. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, X. Q. Pan: Oxide nano-engineering using {MBE}, Mater. Sci. Eng. B 87, 282 (2001) Google Scholar
  101. J. H. Haeni, C. D. Theis, D. G. Schlom: {RHEED} intensity oscillations for the stoichiometric growth of {SrTiO3} thin films by reactive molecular beam epitaxy, J. Electroceramics 4, 385 (2000) Google Scholar
  102. R. A. McKee, F. J. Walker: {US} {P}atent {N}o. 6,306,668 ({S}eptember 23, 1999) Google Scholar
  103. Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, P. Fejes: Advances in heteroepitaxy of oxides on silicon, Thin Solid Films 462–463, 51 (2004) Google Scholar
  104. R. A. McKee, F. J. Walker, M. F. Chisholm: Physical structure and inversion charge at a semiconductor interface with a crystalline oxide, Science 293, 468 (2001) Google Scholar
  105. F. W. Lytle: X-ray diffractometry of low-temperature phase transformations in strontium titanate, J. Appl. Phys. 35, 2212 (1964) Google Scholar
  106. H. Unoki, T. Sakudo: Electron spin resonance of fe3+ in {SrTiO3} with special reference to 110 degrees {\K} phase transition, J. Phys. Soc. Jpn. 23, 546 (1967) Google Scholar
  107. K. Aso: Residual-stress in damaged {SrTiO3} single crystals, Jpn. J. Appl. Phys. 15, 1243 (1976) Google Scholar
  108. S. Watanabe, T. Hikita, M. Kawai: Cleaning the surface of {SrTiO3}(100) and {LaAlO3}(100) under moderate temperature condition by {Bi} adsorption, J. Vac. Sci. Technol. A 9, 2394 (1991) Google Scholar
  109. T. Terashima, K. Iijima, K. Yamamoto, K. Hirata, Y. Bando, T. Takada: Insitu reflection high-energy electron diffraction observation during growth of {YBa2Cu3O7-x}, Jpn. J. Appl. Phys. 28, L987 (1989) Google Scholar
  110. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, H. Koinuma: Atomic control of the {SrTiO3} crystal-surface, Science 266, 1540 (1994) Google Scholar
  111. G. Koster, B. L. Kropman, G. J. H. M. Rjinders, D. H. A. Blank, H. Rogalla: Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide, Appl. Phys. Lett. 73, 2920 (1998) Google Scholar
  112. T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshimam, H. Koinuma: Preparation of thermally stable {TiO2}-terminated {SrTiO3}(100) substrate surfaces, Appl. Phys. Lett. 85, 272 (2004) Google Scholar
  113. R. Sum, H. P. Lang, H.-J. Güntherodt: Scanning force microscopy study of single-crystal substrates used for thin-film growth of high-temperature superconductors, Physica C 242, 174 (1995) Google Scholar
  114. K. Szot, W. Speier: Surfaces of reduced and oxidized {SrTiO3} from atomic force microscopy, Phys. Rev. B 60, 5909 (1999) Google Scholar
  115. Y. Liang, D. A. Bonnell: Atomic structures of reduced {SrTiO3} (001) surfaces, Surf. Sci. Lett. 285, L510 (1993) Google Scholar
  116. U. Balachandran, N. G. Eror: Electrical-conductivity in lanthanum-doped strontium titanate, J. Electrochem. Soc. 129, 1021 (1982) Google Scholar
  117. R. Meyer, R. Waser, J. Helmbold, G. Borchardt: Cationic surface segregation in donor-doped {SrTiO3} under oxidizing conditions, J. Electroceram. 9, 101 (2002) Google Scholar
  118. K. Iwahori, S. Watanabe, M. Kawai, K. Kobayashi, H. Yamada, K. Matsushige: Effect of water adsorption on microscopic friction force on {SrTiO3} (001), Appl. Phys. Lett. 93, 3223 (2003) Google Scholar
  119. J. Fompeyrine, R. Berger, H. P. Lang, J. Perret, E. Machler, G. Cerber, J. P. Locquet: Local determination of the stacking sequence of layered materials, Appl. Phys. Lett. 72, 1697 (1998) Google Scholar
  120. M. Kawasaki, A. Ohtomo, T. Arakane, K. Takahashi, M. Yoshimoto, H. Koinuma: Atomic control of {SrTiO3} surface for perfect epitaxy of perovskite oxides, Appl. Surf. Sci. 107, 102 (1996) Google Scholar
  121. K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer: Localized metallic conductivity and self-healing during thermal reduction of {SrTiO3}, Phys. Rev. Lett. 88, 75508 (2002) Google Scholar
  122. M. Lippmaa, K. Takahashi, A. Ohtomo, S. Ohashi, T. Ohnishi, N. Nakagawa, T. Sato, M. Iwatsuki, H. Koinuma, M. Kawasaki: Atom technology for {J}osephson tunnel junctions: {SrTiO3} substrate surface, Mater. Sci. Eng. B 56, 111 (1998) Google Scholar
  123. K. Szot, W. Speier, J. Herion, C. Freiburg: Restructuring of the surface region in {SrTiO3}, Appl. Phys. A 64, 55 (1997) Google Scholar
  124. M. Lippmaa, K. Takahashi, S. Ohashi, N. Nakagawa, T. Sato, M. Iwatsuki, H. Koinuma, M. Kawasaki: Dynamics of {SrTiO3} surface during wet etching and high-temperature annealing, Ferroelectrics 224, 373 (1999) Google Scholar
  125. M. Lippmaa, M. Kawasaki, A. Ohtomo, T. Sato, M. Iwatsuki, H. Koinuma: Observation of {SrTiO3} step edge dynamics by real-time high-temperature {STM}, Appl. Surf. Sci. 130, 582 (1998) Google Scholar
  126. M. Lippmaa, N. Nakagawa, T. Kinoshita, T. Furumochi, M. Kawasaki, H. Koinuma: Growth dyanmics of oxide thin films at temperatures above 1000 degrees {C}, Physica C 335, 196 (2000) Google Scholar
  127. H. F. Kay, P. Vousden: Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties, Philos. Mag. 40, 1019 (1949) Google Scholar
  128. S. Geller, P. M. Raccah: Phase transitions in perovskite-like compounds of rare earths, Phys. Rev. B 2, 1167 (1970) Google Scholar
  129. B. C. Chakoumakos, D. G. Schlom, M. Urbanik, J. Luine: Thermal expansion of {LaAlO3} and {(La,Sr)(Al,Ta)O3}, substrate materials for superconducting thin-film device applications, J. Appl. Phys. 83, 1979 (1998) Google Scholar
  130. O. {Chaix-Pluchery}, B. Chenevier, J. J. Robles: Anisotropy of thermal expansion in YAlO3 and NdGaO3, Appl. Phys. Lett. 86, 251911 (2005) Google Scholar
  131. I. Utke, C. Klemenz, H. J. Scheel, P. Nüesch: High-temperature {X}-ray measurements of gallates and cuprates, J. Cryst. Growth 174, 813 (1997) Google Scholar
  132. R. Feenstra, L. A. Boatner, J. D. Budai, D. K. Christen, M. D. Galloway, D. B. Poker: Epitaxial superconducting thin-films of YBa2Cu3O7-x on KTaO3 single crystals, Appl. Phys. Lett. 54, 1063 (1989) Google Scholar
  133. T. Konaka, M. Sato, H. Asano, S. Kubo: Relative permittivity and dielectric loss tangent of substrate materials for high-{T}c superconducting film, J. Supercond. 4, 283 (1991) Google Scholar
  134. J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, D. G. Schlom: Structural and optical properties of epitaxial {BaTiO3} thin films grown on {GdScO3}(110), Appl. Phys. Lett. 82, 3460 (2003) Google Scholar
  135. G. W. Berkstresser, A. J. Valentino, C. D. Brandle: Growth of single-crystals of lanthanum aluminate, J. Cryst. Growth 109, 467 (1991) Google Scholar
  136. D. Reagor, F. Garzon: Dielectric and optical-properties of substrates for high-temperature superconductor films, Appl. Phys. Lett. 56, 2741 (1991) Google Scholar
  137. M. Katayama, E. Nomura, N. Kanekama, H. Soejima, M. Aono: Coaxial impact-collision ion-scattering spectroscopy {(CAICISS)} – {A} novel method for surface-structure analysis, Nucl. Instrum. Methods B 33, 857 (1988) Google Scholar
  138. J. Konopka, I. Wolff: Dielectric-properties of substrates for deposition of high-{T}c thin-films up to {40\GHz}, IEEE Trans. Microwave Theory Technol. 40, 2418 (1992) Google Scholar
  139. D. J. Tao, H. Wu, X. D. Xu, R. S. Yan, F. Y. Liu, A. P. B. Sinha, X. P. Jiang, H. L. Hu: Czochralski growth of {(La,Sr)(Al,Ta)O3} single crystal, Opt. Mater. 23, 425 (2003) Google Scholar
  140. M. Berkowski, J. Fink-Finowicki, R. Diduszko, P. Byszewski, R. Aleksiyko, R. Kikalejshvili-Domukhovska: Growth and structure of SrAl0.5Ta0.5O3:LaAlO3 solid solutions single crystals, J. Cryst. Growth 257, 146 (2003) Google Scholar
  141. T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, H. Koinuma: A-site layer terminated perovskite substrate: {NdGaO3}, Appl. Phys. Lett. 74, 2531 (1999) Google Scholar
  142. D. Schweitzer, T. Bollmeier, B. Stritzker, B. Rauschenbach: Twinning of {YBa2Cu3O7} thin films on different substrates, Thin Solid Films 280, 147 (1996) Google Scholar
  143. M. L. Lucia, J. Santamaria, F. SanchezQuesada, W. Lopera, M. E. Gomez, P. Prieto: Influence of epitaxial properties on the mutual inductance response of high-quality {YBCO} thin films, Physica C 260, 149 (1996) Google Scholar
  144. S. Geller: Crystallographic studies of perovskite-like compounds. 4. {R}are earth scandates, vanadites, galliates, orthochromites, Acta Crystallogr. 10, 243 (1957) Google Scholar
  145. R. L. Sandstrom, E. A. Giess, W. J. Gallagher, A. Segmuller, E. I. Cooper, M. F. Chisholm, A. Gupta, S. Shinde, R. B. Laibowitz: Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films, Appl. Phys. Lett. 53, 1874 (1988) Google Scholar
  146. H. J. Scheel, M. Berkowski, B. Chabot: Substrates for high-temperature superconductors, Physica C 185–189, 2095 (1991) Google Scholar
  147. E. Talik, A. Kruczek, H. Sakowska, Z. Ujma, M. Gala, M. Neumann: {XPS} characterisation of neodymium gallate wafers, J. Alloys Compd. 377, 259 (2004) Google Scholar
  148. T. Mihara, K. Shibuya, T. Ohnishi, H. Koinuma, M. Lippmaa: Transport properties of ultrathin oxide films and nanostructures, Thin Solid Films 486, 63 (2005) Google Scholar
  149. W. Prusseit, L. A. Boatner, D. Rytz: Epitaxial {YBa2Cu3O7} growth on {KTaO3} (001) single-crystals, Appl. Phys. Lett. 63, 3376 (1993) Google Scholar
  150. J. R. Thompson, L. A. Boatner, J. O. Thomson: Very low temperature search for superconductivity in semiconducting {KTaO3}, J. Low Temp. Phys. 47, 467 (1982) Google Scholar
  151. L. S. {Senhouse, Jr.}, M. V. {DePaolis, Jr.}, T. C. Loomis: Calcium concentration vs net ionized donor concentration in single-crystal {KTaO3}, Appl. Phys. Lett. 8, 173 (1966) Google Scholar
  152. S. H. Wemple, A. Jayaraman, M. {DiDomenico, Jr.}: Evidence from pressure experiments for electron scattering by ferroelectric lattice mode in {AB\uO3} semiconductors, Phys. Rev. Lett. 17, 142 (1966) Google Scholar
  153. K. Ueno, I. H. Inoue, T. Yamada, H. Akoh, Y. Tokura, H. Takagi: Field-effect transistor based on {KTaO3} perovskite, Appl. Phys. Lett. 84, 3726 (2004) Google Scholar
  154. J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple: Nonlinear dielectric properties of {KTaO3} near its curie point, Appl. Phys. Lett. 2, 185 (1963) Google Scholar
  155. P. Buffat, J. D. Ganière, M. Rappaz, D. Rytz: Natural and etched surfaces in para-electric and ferroelectric KTa1-xNbxO3 – {A} study by scanning electron-microscopy and {X}-ray topography, J. Cryst. Growth 74, 353 (1986) Google Scholar
  156. S. Karimoto, K. Ueda, M. Naito, T. Imai: Single-crystalline superconducting thin films of electron-doped infinite-layer compounds grown by molecular-beam epitaxy, Appl. Phys. Lett. 79, 2767 (2001) Google Scholar
  157. H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, P. J. Marrero, D. P. Norton: The growth and properties of epitaxial {KNbO3} thin films and {KNbO3}/{KTaO3} superlattices, Appl. Phys. Lett. 68, 1488 (1996) Google Scholar
  158. A. F. Chow, D. J. Lichtenwalner, R. R. Woolcott, T. M. Graettinger, O. Auciello, A. I. Kingon, L. A. Boatner, N. R. Parikh: Epitaxial {KNbO3} thin-films on {KTaO3}, {MgAl2O4}, and {MGO} substrates, Appl. Phys. Lett. 65, 1073 (1994) Google Scholar
  159. Y. Kim, A. Erbil, L. A. Boatner: Substrate dependence in the growth of epitaxial {Pb1-xLaxTiO3} thin films, Appl. Phys. Lett. 69, 2187 (1996) Google Scholar
  160. H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, C. Gerber, M. Urbanik: Semiconducting epitaxial films of metastable {SrRu0.5Sn0.5 O3}, Appl. Phys. Lett. 70, 2147 (1997) Google Scholar
  161. N. Ikemiya, A. Kitamura, S. Hara: Surface structures of {{MgO}}(100) and {SrTiO3}(100) as revealed by atomic force microscopy, J. Cryst. Growth 160, 104 (1996) Google Scholar
  162. P. W. Tasker, D. M. Duffy: The structure and properties of the stepped surface of {MgO} and {NiO}, Surf. Sci. 137, 91 (1984) Google Scholar
  163. B. H. Moeckly, S. E. Russek, D. K. Lathrop, R. A. Buhrman, J. Li, J. W. Mayer: Interface stability and the growth of optical quality perovskites on {MgO}, Appl. Phys. Lett. 57, 1687 (1990) Google Scholar
  164. M. Murugesan, H. Obara, Y. Nakagawa, S. Kosaka, H. Yamasaki: Influence of {MgO} substrate annealing on the microwave properties of laser ablated yba2cu3oz thin films, Supercond. Sci. Technol. 17, 113 (2004) Google Scholar
  165. S. S. Perry, P. B. Merrill: Preparation and characterization of {MgO}(100) surfaces, Surf. Sci. 383, 268 (1997) Google Scholar
  166. L. D. Madsen, R. Charavel, J. Birch, B. Svedberg: Assessment of {MgO}(100) and (111) substrate quality by {X}-ray diffraction, J. Cryst. Growth 209, 91 (2000) Google Scholar
  167. Y. Yan, M. F. Chisholm, G. Duscher, A. Maiti, S. J. Pennycook, S. T. Pantelides: Impurity-induced structural transformation of a {MgO} grain boundary, Phys. Rev. Lett. 81, 3675 (1998) Google Scholar
  168. R. V. Smilgys, S. W. Robey, C. K. Chiang, T. J. Hsieh: J. Vac. Sci. Technol. A 11, 1361 (1993) Google Scholar
  169. T. Minamikawa, T. Suzuki, Y. Yonezawa, K. Segawa: Jpn. J. Appl. Phys. 34, 4038 (1995) Google Scholar
  170. R. Souda, Y. Hwang, T. Aizawa, W. Hayami, K. Oyoshi, S. Hishita: {Ca} segregation at the {MgO}(001) surface studied by ion scattering spectroscopy, Surf. Sci. 387, 136 (1997) Google Scholar
  171. C. Duriez, C. Chapon, C. R. Henry, J. M. Rickard: Structrual characterization of {MgO}(100) surfaces, Surf. Sci. 230, 123 (1990) Google Scholar
  172. R. Plass, J. Feller, M. {Gajdardziska-Josifovska}: Morphology of {MgO}(111) surfaces: {A}rtifacts associated with the faceting of polar oxide surfaces into neutral surfaces, Surf. Sci. 414, 26 (1998) Google Scholar
  173. V. E. Henrich: Thermal faceting on (110) and (111) surfaces of {MgO}, Surf. Sci. 57, 385 (1976) Google Scholar
  174. S. Karimoto, M. Naito: Electron-doped infinite-layer thin films with {T_\text{c}} over {40\K} grown on {DyScO3} substrates, Appl. Phys. Lett. 84, 2136 (2004) Google Scholar
  175. W. Chang, J. A. Bellotti, S. W. Kirchoefer, J. M. Pond: Strain tensor effects on {SrTiO3} incipient ferroelectric phase transition, Integr. Ferroelectr. 77, 173 (2005) Google Scholar
  176. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom: Room-temperature ferroelectricity in strained {SrTiO3}, Nature 430, 758 (2004) Google Scholar
  177. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. Schlom, C. B. Eom: Enhancement of ferroelectricity in strained {BaTiO3} thin films, Science 306, 1005 (2004) Google Scholar
  178. Z. Z. Li, A. Perrin, J. Padiou, M. Sergent, J. Godard: Physical film substrate interactions in {YBa2Cu3O7-x} thin films grown on (001){BaTiO3} single-crystals, Mater. Lett. 7, 178 (1988) Google Scholar
  179. M. K. Lee, T. K. Nath, C. B. Eom, M. C. Smoak, F. Tsui: Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric {BaTiO3} substrate, Appl. Phys. Lett. 77, 3547 (2000) Google Scholar
  180. D. Dale, A. Fleet, J. D. Brock, Y. Suzuki: Dynamically tuning properties of epitaxial colossal magnetoresistance thin films, Appl. Phys. Lett. 82, 3725 (2003) Google Scholar
  181. C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley, O. Fischer, J. M. Triscone: Local, nonvolatile electronic writing of epitaxial {Pb(Zr0.52Ti0.48)O3/SrRuO3} heterostructures, Science 276, 1100 (1997) Google Scholar
  182. C. H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, J.-M. Triscone: Electrostatic modulation of superconductivity in ultrathin {GdBa2Cu3O7-x} films, Science 284, 1152 (1999) Google Scholar
  183. K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, J.-M. Triscone: Local switching of two-dimensional superconductivity using the ferroelectric field effect, Nature 441, 195 (2006) Google Scholar
  184. C. H. Ahn, J.-M. Triscone, J. Mannhart: Electric field effect in correlated oxide systems, Nature 424, 1015 (2003) Google Scholar
  185. N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev: Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films, Phys. Rev. Lett. 80, 1988 (1998) Google Scholar
  186. M. Dawber, K. M. Rabe, J. F. Scott: Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77, 1083 (2005) Google Scholar
  187. M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, J.-M. Triscone: Unusual behavior of the ferroelectric polarization in {PbTiO3}/{SrTiO3} superlattices, Phys. Rev. Lett 95, 177601 (2005) Google Scholar
  188. A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Phase transitions and polarizations in epitaxial {BaTiO3}/{SrTiO3} superlattices studied by second-harmonic generation, J. Appl. Phys. 93, 1180 (2003) Google Scholar
  189. S. Rios, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Orthorhombic strontium titanate in {BaTiO3–SrTiO3} superlattices, J. Phys. Condens. Matter 15, 305 (2003) Google Scholar
  190. K. Johnston, X. Huang, J. B. Neaton, K. M. Rabe: First-principles study of symmetry lowering and polarization in {BaTiO3}/{SrTiO3} superlattices with in-plane expansion, Phys. Rev. B 71, 100103(R) (2005) Google Scholar
  191. J. B. Neaton, K. M. Rabe: Theory of polarization enhancement in epitaxial {BaTiO3}/{SrTiO3} superlattices, Appl. Phys. Lett. 82, 1586 (2003) Google Scholar
  192. S. M. Nakhmanson, K. M. Rabe, D. Vanderbilt: Predicting polarization enhancement in multicomponent ferroelectric superlattices, Phys. Rev. Lett. 73, 060101(R) (2006) Google Scholar
  193. B. D. Qu, W. L. Zhong, R. H. Prince: Interfacial coupling in ferroelectric superlattices, Phys. Rev. B 55, 11218 (1997) Google Scholar
  194. Y. Q. Ma, J. Shen, X. H. Xu: Coupling effects in ferroelectric superlattice, Solid State Commun. 114, 461 (2000) Google Scholar
  195. K.-H. Chew, Y. Ishibashi, F. G. Shin, H. L. W. Chan: Theory of interface structures in double-layer ferroelectrics, J. Phys. Soc. Jpn. 72, 2364 (2003) Google Scholar
  196. V. A. Stephanovich, I. A. Luk'yanchuk, M. G. Karkut: Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices, Phys. Rev. Lett. 94, 047601 (2005) Google Scholar
  197. A. L. Roytburd, S. Zhong, S. P. Alpay: Dielectric anomaly due to electrostatic coupling in ferroelectric-paraelectric bilayers and multilayers, Appl. Phys. Lett. 87, 092902 (2005) Google Scholar
  198. S. Zhong, S. P. Alpay, J. V. Mantese: High dielectric tunability in ferroelectric-paraelectric bilayers and multilayer superlattices, Appl. Phys. Lett. 88, 132904 (2006) Google Scholar
  199. H. Tabata, H. Tanaka, T. Kawai: Formation of artificial {BaTiO3}/{SrTiO3} superlattices using pulsed-laser deposition and their dielectric properties, Appl. Phys. Lett. 65, 1970 (1994) Google Scholar
  200. D. O'Neill, R. M. Bowman, J. M. Gregg: Dielectric enhancement and {M}axwell–{W}agner effects in ferroelectric superlattice structures, Appl. Phys. Lett. 77, 1520 (2000) Google Scholar
  201. J. Sigman, D. P. Norton, H. M. Christen, P. H. Fleming, L. A. Boatner: Antiferroelectric behavior in symmetric {KNbO3}/{KTaO3} superlattices, Phys. Rev. Lett. 88, 097601 (2002) Google Scholar
  202. M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, R. L. Migoni:: Ferroelectric properties of {KNbO3}/{KTaO3} superlattices by atomic-level simulation, J. Appl. Phys. 90, 4509 (2001) Google Scholar
  203. M. Sepliarsky, S. R. Phillpot, M. G. Stachiotti, R. L. Migoni: Ferroelectric phase transitions and dynamical behavior in {KNbO3}/{KTaO3} superlattices by molecular-dynamics simulation, J. Appl. Phys. 91, 3165 (2002) Google Scholar
  204. J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, D. G. Schlom: Abrupt {PbTiO3}/{SrTiO3} superlattices grown by reactive molecular beam epitaxy, Appl. Phys. Lett. 74, 2851 (1999) Google Scholar
  205. N. Huang, Z. R. Liu, Z. Q. Wu, J. Wu, W. H. Duan, B. L. Gu, X. W. Zhang: Huge enhancement of electromechanical responses in compositionally modulated {Pb(Zr1-xTix)O3}, Phys. Rev. Lett. 91, 067602 (2003) Google Scholar
  206. C. Bungaro, K. M. Rabe: Epitaxially strained [001]-{(PbTiO3)(1)(PbZrO3)(1)} superlattice and {PbTiO3} from first principles, Phys. Rev. B 69, 184101 (2004) Google Scholar
  207. I. Kanno, S. Hayashi, R. Takayama, T. Hirao: Superlattices of {PbZrO3} and {PbTiO3} prepared by multi-ion-beam sputtering, Appl. Phys. Lett. 68, 328 (1996) Google Scholar
  208. T. Choi, J. Lee: Structural and dielectric properties of artificial {PbZrO3}/{PbTiO3} superlattices grown by pulsed laser deposition, Thin Solid Films 475, 283 (2005) Google Scholar
  209. N. Sai, B. Meyer, D. Vanderbilt: Compositional inversion symmetry breaking in ferroelectric perovskites, Phys. Rev. Lett. 84, 5636 (2000) Google Scholar
  210. M. P. Warusawithana, E. V. Colla, J. N. Eckstein, M. B. Weissman: Artificial dielectric superlattices with broken inversion symmetry, Phys. Rev. Lett. 90, 036802 (2003) Google Scholar
  211. H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, D. H. Lowndes: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, Nature 433, 395 (2005) Google Scholar
  212. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh: Multiferroic {BaTiO3–CoFe2O4} nanostructures, Science 303, 661 (2004) Google Scholar
  213. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanthan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh: Epitaxial {BiFeO3} multiferroic thin film heterostructures, Science 299, 1719 (2003) Google Scholar
  214. H. Bea, M. Bibes, M. Sirena, G. Herranz, K. Bouzehouane, E. Jacquet, S. Fusil, P. Paruch, M. Dawber, J. P. Contour, A. Barthelemey: Combining half-metals and multiferroics into epitaxial heterostructures for spintronics, Appl. Phys. Lett. 88, 062502 (2006) Google Scholar
  215. F. {Le Marrec}, R. Farhi, M. {El Marssi}, J. L. Dellis, M. G. Karkut, D. Ariosa: Ferroelectric {PbTiO3}/{BaTiO3} superlattices: Growth anomalies and confined modes, Phys. Rev. B 61, R6447 (2000) Google Scholar
  216. A. Ohtomo, H. Y. Hwang: A high-mobility electron gas at the {LaAlO3}/{SrTiO3} heterointerface, Nature 427, 423 (2004) Google Scholar
  217. M. Huijben, G. Rjinders, D. H. A. Blank, S. Bals, S. VanAert, J. Verbeeck, G. VanTendeloo, A. Brinkman, H. Hilgenkamp: Electronically coupled complementary interfaces between perovskite band insulators, Nature Mater. 5, 556 (2006) Google Scholar
  218. C. H. Ahn, K. M. Rabe, J.-M. Triscone: Local polarization in oxide thin films and heterostructures, Science 303, 408 (2004) Google Scholar
  219. R. A. {McKee}, F. J. Walker, M. F. Chisholm: Crystalline oxides on silicon: {T}he first five monolayers, Phys. Rev. Lett. 81, 3014 (1998) Google Scholar
  220. D. A. Muller: A sound barrier for silicon?, Nature Mater. 4, 645 (2005) Google Scholar
  221. International {T}echnology {R}oadmap for {S}emiconductors (2005) Google Scholar
  222. W. Schottky: Semi-conductor theory in barrier layers, Naturwissenschaften 26, 843 (1938) Google Scholar
  223. R. A. McKee: The interface phase and the {S}chottky barrier for a crystalline dielectric on silicon, Science 300, 1726 (2003) Google Scholar
  224. J. W. Cahn, J. E. Hilliard: Free energy of a nonuniform system. 1. {I}nterfacial free energy, J. Chem. Phys. 28, 258 (1958) Google Scholar
  225. N. Nakagawa, H. Y. Hwang, D. A. Muller: Why some interfaces cannot be sharp, Nature Mater. 5, 204 (2006) Google Scholar
  226. G. Lucovsky, Y. Wu, H. Nimi, V. Misra, J. C. Philips: Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics, Appl. Phys. Lett. 74, 2005 (1999) Google Scholar
  227. R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, D. E. Zelmon: Molecular-beam epitaxy of epitaxial barium silicide, barium oxide and barium-titanate on silicon, Appl. Phys. Lett. 59, 782 (1991) Google Scholar
  228. R. A. McKee, F. J. Walker, J. R. Conner, R. Raj: {BaSi2} and thin-film alkaline-earth silicides on silicon, Appl. Phys. Lett. 63, 2818 (1993) Google Scholar
  229. G. J. Norga, C. Marchiori, A. Guiler, J. P. Locquet, C. Rossel, H. Siegwart, D. Caimi, J. Fompeyrine, T. Conard: Phase of reflection high-energy electron diffraction oscillations during {(Ba,Sr)O} epitaxy on {Si(100)}: {A} marker of {Sr} barrier integrity, Appl. Phys. Lett. 87, 262905 (2005) Google Scholar
  230. C. D. Wagner, et al.: Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prarie 1979) Google Scholar
  231. S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani: Band offset and structure of {SrTiO3}/{Si(001)} heterojunctions, J. Vac. Sci. Technol. A 19, 934 (2001) Google Scholar
  232. J. Zachariae, H. Pfnur: Growth conditions, stoichiometry, and electronic structure of lattice-matched {SrO/BaO} mixtures on {Si(100)}, Phys. Rev. B 72, 075410 (2005) Google Scholar
  233. G. H. Lee, B. C. Shin, I. S. Kim: Critical thickness of {BaTiO3} film on {SrTiO3} (001) evaluated by reflection high-energy electron diffraction, Mater. Lett. 50, 134 (2001) Google Scholar
  234. H. Tabata, H. Tanaka, T. Kawai: Formation of artificial {BaTiO3}/{SrTiO3} superlattices using pulsed-laser deposition and their dielectric properties, Appl. Phys. Lett. 65, 1970 (1994) Google Scholar
  235. S. Jeon, F. J. Walker, C. A. Billman, R. A. McKee, H. Hwang: Electrical characteristics of epitaxially grown {SrTiO3} on silicon for metal-insulator-semiconductor gate dielectric applications, IEEE Electron Device Lett. 24, 218 (2003) Google Scholar
  236. V. Vaithyanathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y. L. Li, A. Kochhar, H. Ma, J. Levy, P. Zschack, J. C. Woicik, L. Q. Shen, V. Gopalan, D. G. Schlom: c-axis oriented epitaxial {BaTiO3} films on (001){Si}, J. Appl. Phys. 100, 024108 (2006) Google Scholar
  237. A. {Herrera-Gomez}, F. S. Aquirre-Tostado, Y. Sun, P. Pianetta, Z. Yu, D. Marshall, R. Droopad, W. E. Spicer: Photoemission from the {Sr}/{Si}(001) interface, J. Appl. Phys. 90, 6070 (2001) Google Scholar
  238. H. Mori, H. Ishiwara: Epitaxial-growth of {SrTiO3} films on {Si}(100) substrates using a focused electron beam evaporation method, Jpn. J. Appl. Phys. 30, L1415 (1991) Google Scholar
  239. X. Hu, X. Yao, C. A. Peterson, D. Sarid, Z. Yu, J. Wang, D. S. Marshall, R. Droopad, J. A. Hallmark, W. J. Ooms: The (3 \times 2) phase of {Ba} adsorption on {Si}(001)-2 \times 1, Surf. Sci. 445, 256 (2000) Google Scholar
  240. C. J. Forst, C. R. Ashman, K. Schwarz, P. E. Blochl: The interface between silicon and a high-k oxide, Nature 427, 53 (2004) Google Scholar
  241. C. R. Ashman, C. J. Forst, K. Schwarz, P. E. Blochl: First-principles calculations of strontium on {Si}(001), Phys. Rev. B 69, 075309 (2004) Google Scholar
  242. Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Esienbeiser, D. Marshall, K. Moore, J. Kulik, P. Fejes: Advances in heteroepitaxy of oxides on silicon, Thin Solid Films 462–63, 51 (2004) Google Scholar
  243. C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J. P. Locquet, J. Fompeyrine, D. J. Webb, C. Dieker, J. W. Seo: Field-effect transistors with {SrHfO3} as gate oxide, Appl. Phys. Lett. 89, 053506 (2006) Google Scholar
  244. Y. Liang, J. Kulik, T. C. Eschrich, R. Droopad, Z. Yu, P. Maniar: Hetero-epitaxy of perovskite oxides on {GaAs}(001) by molecular beam epitaxy, Appl. Phys. Lett. 85, 1217 (2004) Google Scholar
  245. R. F. Klie, Y. Zhu, E. I. Altman, Y. Liang: Atomic structure of epitaxial {SrTiO3}–{GaAs}(001) heterojunctions, Appl. Phys. Lett. 87, 143106 (2005) Google Scholar
  246. A. Posadas, J. B. Yau, C. H. Ahn, J. Han, S. Gariglio, K. Johnston, K. M. Rabe, J. B. Neaton: Epitaxial growth of multiferroic {YMnO3} on {GaN}, Appl. Phys. Lett. 87, 171915 (2005) Google Scholar
  247. W. A. Doolittle, A. G. Carver, W. Henderson: Molecular beam epitaxy of complex metal-oxides: Where have we come, where are we going, and how are we going to get there?, J. Vac. Sci. Technol. B 23, 1272 (2005) Google Scholar
  248. A. Lin, X. Hong, V. Wood, A. A. Vervkin, C. H. Ahn, R. A. McKee, F. J. Walker, E. D. Specht: Epitaxial growth of {Pb(Zr0.2Ti0.8)O3} on {Si} and its nanoscale piezoelectric properties, Appl. Phys. Lett. 78, 2034 (2001) Google Scholar
  249. K. Eisenbeiser, R. Emrick, R. Droopad, Z. Yu, J. Finder, S. Rockwell, J. Holmes, C. Overgaard, W. Ooms: {GaAs} {MESFETs} fabricated on {Si} substrates using a {SrTiO3} buffer layer, IEEE Electron Device Lett. 23, 300 (2002) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Agham-Bayan Posadas
    • 1
  • Mikk Lippmaa
    • 2
  • Fred J. Walker
    • 1
  • Matthew Dawber
    • 3
  • Charles H. Ahn
    • 1
    • 4
  • Jean-Marc Triscone
    • 3
  1. 1.Department of Applied PhysicsYale UniversityNew HavenUSA
  2. 2.Institute for Solid State PhysicsUniversity of TokyoChibaJapan
  3. 3.Condensed Matter Physics DepartmentUniversity of GenevaGeneva 4Switzerland
  4. 4.Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations