• C. J. Lambrides
  • I. D. Godwin
Part of the Genome Mapping and Molecular Breeding in Plants book series (GENMAPP, volume 3)


Linkage Group Powdery Mildew Quantitative Trait Locus Analysis Mung Bean Segregation Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrios GN (1988) Plant Pathology, 3rd edn. Academic, San DiegoGoogle Scholar
  2. Akapunam M (1996) Mung bean (Vigna radiata (L.) Wilczek). In: Nwololo E, Smartt J (eds) Food and Feed from Legumes and Oilseeds. Chapman and Hall, LondonGoogle Scholar
  3. Ali M, Malik IA, Sabir HM, Ahmad B (1997) The mungbean green revolution in Pakistan. Asian Vegetable Research and Development Center, Shanhua, Taiwan. AVRDC Technical Bulletin No. 24. Publication No. 97-459Google Scholar
  4. Amutha S, Ganapathi A, Muruganathan M (2003) In vitro organogenesis and plant formation in Vigna radiata (L.) Wilczek. Plant Cell Tiss Org Cult 72:203–207CrossRefGoogle Scholar
  5. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  6. Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proc 49th Annual Corn and Sorghum Industry Research Conference ASTA, Washington, DC, pp 250–266Google Scholar
  7. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36PubMedCrossRefGoogle Scholar
  8. Botstein D, White RL, Skolnik M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  9. Boutin SR, Young ND, Olson TC, Yu Z-H, Shoemaker RC, Vallejos CE (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937PubMedGoogle Scholar
  10. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854PubMedGoogle Scholar
  11. Chaitieng B, Kaga A, Han OK, Wang XW, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed 121:521–525CrossRefGoogle Scholar
  12. Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294PubMedCrossRefGoogle Scholar
  13. Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Shoemaker RC, Matthews BF, Jarvik T, Young ND (1999) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919–928CrossRefGoogle Scholar
  14. Crow JF (1952) Dominance and overdominance. In: Cowen JW (ed) Heterosis. Iowa State College Press, Ames, IA, pp 282–297Google Scholar
  15. Cupka TB, Edward LH (1988) Production and breeding of mungbean in USA. In: Proc 2nd Int Symp on Mungbean, 16–20 Nov 1987, Bangkok, Thailand, pp 675–680Google Scholar
  16. Daglish GJ, Erbacher JM, Eelkema M (1993) Efficacy of protectants against Callosobruchus phaseolin (Gyll.) and C. maculatus (F.) (Coleoptera:Bruchidae) in mungbeans. J Stored Prod Res 29:345–349CrossRefGoogle Scholar
  17. Fatokun CA, Danesh D, Menancio-Hautea DI, Young ND (1992 a) A linkage map of cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers (2N=22). In: O’Brien SJ (ed) Genome Maps. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 6.256–6.258Google Scholar
  18. Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992 b) Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132:841–846PubMedGoogle Scholar
  19. Fatokun CA, Danesh D, Young ND, Stewart EL (1993) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86:97–104CrossRefGoogle Scholar
  20. Fauquet CM, Maxwell DP, Gronenborn B, Stanley J (2000) Revised proposal for naming gemini viruses. Arch Virol 145:1743–1761PubMedCrossRefGoogle Scholar
  21. Fery RL (1980) Genetics of Vigna. Hort Rev 2:311–394Google Scholar
  22. Fujii K, Ishimoto M, Kitamura K (1989) Patterns of resistance to bean weevils (Bruchidae) in Vigna radiata — sublobata complex inform the breeding of new resistant varieties. Appl Entomol Zool 24:126–132Google Scholar
  23. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxonomy 20:509–517CrossRefGoogle Scholar
  24. Humphry ME, Konduri V, Lambrides CJ, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2002) Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of co-linearity between the two genomes. Theor Appl Genet 105:160–166PubMedCrossRefGoogle Scholar
  25. Humphry ME, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2003) Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome 46:738–744PubMedCrossRefGoogle Scholar
  26. Humphry ME, Lambrides CJ, Liu CJ (2005) Relationships between loci conditioning hard-seededness and seed size in mungbean (Vigna radiata (L.) Wilczek) assessed by QTL analysis. Plant Breed 124:292–298CrossRefGoogle Scholar
  27. Imrie BC (1983) Response to selection for weathering resistance in mungbean. In: Driscoll CJ (ed) Proc 8th Australian Plant Breed Conf, University of Adelaide, Adelaide, Australia, pp 298–299Google Scholar
  28. Imrie BC (1992) Reduction in hardseededness in mungbean by short duration high temperature treatment. Aust J Exp Agric 32:483–486CrossRefGoogle Scholar
  29. Imrie BC (1996) Mung bean. In: Hyde K (ed) The New Rural Industries. A Handbook for Farmers and Investors. Rural Industries Research and Development Corporation, Canberra, Australia, pp 355–360Google Scholar
  30. Imrie BC, Lawn RJ, Williams RW (1984) Plant breeding for seed production and quality. In: Australian Seeds Research Conference, Queensland Agricultural College, Lawes, Australia, pp 165–180Google Scholar
  31. Imrie BC, Lawn RJ, Ahmed ZU (1985) Breeding for weather resistance in mungbean. In: Yates JJ (ed) Crop and Pasture Production: Science and Practice. Working papers of the 3rd Australian Agronomy Conference, Australian Society of Agronomy, Hobart, Australia, pp 326Google Scholar
  32. Imrie BC, Lawn RJ, Williams RW (1988) Breeding for resistance to weather damage in mungbean. In: Shanmugasundaram S, McLean BT (eds) Mungbean. Proc 2nd Int Symp on Mungbean, AVRDC, Taiwan, pp 131–135Google Scholar
  33. Imrie BC, Lawn RJ, Yeates S (1991) Mungbean breeding and cultivar development in Australia. In: Imrie BC, Lawn RJ (eds) Mungbean: The Australian Experience. Proc 1st Australian Mungbean Workshop, CSIRO Division of Tropical Crops and Pastures, Brisbane, Australia, pp 14–20Google Scholar
  34. Ishimoto M, Teraishi M, Kaga A, Aoyama K, Ijima N, Sugawara F, Kawasaki S (2000) Biochemical and genetic basis of the insect resistance in mungbean (Vigna radiata (L.) Wilczek). In: Proc 6th Int Congress of Plant Mol Biol, Quebec, Australia, S16–25Google Scholar
  35. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Yi-Pei Mao, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224PubMedCrossRefGoogle Scholar
  36. Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium-mediated genetic transformation of mungbean — a recalcitrant grain legume. Plant Sci 161:239–247PubMedCrossRefGoogle Scholar
  37. James AT, Lawn RJ, Williams RW, Lambrides CJ (1999) Cross fertility of Australian accessions of wild mungbean (Vigna radiata ssp. sublobata) with green gram (V. radiata ssp. radiata). Aust J Bot 47:601–610CrossRefGoogle Scholar
  38. Jeong SC, Kristipati S, Hayes AJ, Maughan PJ, Noffsinger SL, Gunduz I, Buss GR, Saghai Maroof MA (2002) Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv 3. Crop Sci 42:265–270PubMedCrossRefGoogle Scholar
  39. Kaga A, Ohnishi M, Ishii T, Kamijima O (1996 a) A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis×V. nakashimae). Theor Appl Genet 93:658–663CrossRefGoogle Scholar
  40. Kaga A, Tomooka N, Egawa Y, Hosake K, Kamijima O (1996 b) Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica 88:17–24CrossRefGoogle Scholar
  41. Kaga A, Ishimoto M (1998) Genetic localisation of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Gen Genet 258:378–384PubMedCrossRefGoogle Scholar
  42. Kaga A, Ishii T, Tsukimoto K, Tokoro E, Kamijima O (2000) Comparative molecular mapping in Ceratotropis species using an interspecific cross between azuki bean (Vigna angularis) and rice bean (V. umbellata). Theor Appl Genet 100:207–213CrossRefGoogle Scholar
  43. Keim P, Diers BW, Shoemaker RC (1990) Genetic analysis of soybean hard seededness with molecular markers. Theor Appl Genet 79:465–469CrossRefGoogle Scholar
  44. Khattak GSS, Haq MA, Ashraf M, Elahi T (2000) Genetic of mungbean yellow mosaic virus (MYMV) in mungbean (Vigna radiata L. Wilczek). J Genet Breed 54:237–243Google Scholar
  45. Kitamura K, Ishimoto M, Sawa M (1988) Inheritance of resistance to infestation with azuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jpn J Breed 38:459–464Google Scholar
  46. Konduri V, Godwin ID, Liu CJ (2000) Genetic mapping of the Lablab purpureus genome suggests the presence of ‘cuckoo’ gene(s) in this species. Theor Appl Genet 100:866–871CrossRefGoogle Scholar
  47. Kumari P, Dahiya BS (1981) Preliminary observations on production of hard seeds in green gram (Vigna radiata L.). In: Anonymous (ed) 1st National Workshop on Seed Technology, HAU, HisarGoogle Scholar
  48. Kumar SV, Tan SG, Quah SC, Yusoff K (2002 a) Isolation of microsatellite markers in mungbean, Vigna radiata. Mol Ecol Notes 2:96–98CrossRefGoogle Scholar
  49. Kumar SV, Tan SG, Quah SC, Yusoff K (2002 b) Isolation and characterisation of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Mol Ecol Notes 2:293–295CrossRefGoogle Scholar
  50. Lambrides CJ (1996) Breeding for improved seed quality traits in mungbean (Vigna radiata L. Wilczek) using DNA markers. PhD dissertation, University of Queensland, Brisbane, AustraliaGoogle Scholar
  51. Lambrides CJ, Imrie BC (2000) Susceptibility of mungbean varieties to the bruchid species Callosobruchus maculatus (F.), C. phaseoli (Gyll.), C. chinensis (L.), and Acanthoscelides obtectus (Say.) (Coleoptera:Chrysomelidae). Aust J Agric Res 51:85–89CrossRefGoogle Scholar
  52. Lambrides CJ, Ealing PM, Imrie BC (1998) Marker-assisted selection for bruchid resistance in mungbean. In: Proc 4th Asia Pacific Conf on Agri Biotechnol. Agricultural Biotechnology: Laboratory, Field and Market, 13–16 July, Darwin, Australia, p 280Google Scholar
  53. Lambrides CJ, Diatloff AL, Liu CJ, Imrie BC (1999) Molecular marker studies in mungbean Vigna radiata. In: Proc 11th Australasian Plant Breeding Conf, 19–23 April, Adelaide, AustraliaGoogle Scholar
  54. Lambrides CJ, Lawn RJ, Godwin ID, Manners J, Imrie BC (2000) Two genetic linkage maps of mungbean using RFLP and RAPD markers. Aust J Agri Res 51:415–425CrossRefGoogle Scholar
  55. Lambrides CJ, Chapman SC, Shorter R (2004 a) Genetic variation for carbon isotope discrimination in sunflower: association with transpiration efficiency and evidence for cytoplasmic inheritance. Crop Sci 44:1642–1653CrossRefGoogle Scholar
  56. Lambrides CJ, Godwin ID, Lawn RJ, Imrie BC (2004 b) Segregation distortion for seed testa colour in mungbean (Vigna radiata L. Wilczek). J Hered 95:532–535PubMedCrossRefGoogle Scholar
  57. Lavania UC, Lavania S (1982) Chromosome banding patterns in some Indian pulses. Ann Bot 49:235–239Google Scholar
  58. Lawn RJ (1979 a) Agronomic studies on Vigna spp. in southeastern Queensland I. Phenological response of cultivars to sowing date. Aust J Agric Res 30:855–870CrossRefGoogle Scholar
  59. Lawn RJ (1979 b) Agronomic studies on Vigna spp. in southeastern Queensland II. Vegetative and reproductive response of cultivars to sowing date. Aust J Agric Res 30:871–882CrossRefGoogle Scholar
  60. Lawn RJ (1983) Agronomic studies on Vigna spp in southeastern Queensland. III. Response to sowing arrangement. Aust J Agric Res 34:505–515CrossRefGoogle Scholar
  61. Lawn RJ (1995) The Asiatic Vigna species. Vigna spp. (V. radiata, V. mungo, V. angularis, V. umbellata and V. acontifolia) (Leguminosae-Papilionoideae). In: Smartt J, Simmonds NW (eds) Evolution of Crop Plants, 2nd edn. Longman, London, pp 321–326Google Scholar
  62. Lawn RJ, Ahn CS (1985) Mungbean (Vigna radiata (L.) Wilczek/Vigna mungo (L.) Hepper). In: Summerfield RJ, Roberts EH (eds) Grain Legume Crops. Longman, London, pp 584–623Google Scholar
  63. Lawn RJ, Cottrell A (1988) Wild mungbean and its relatives in Australia. Biologist 35(5):267–273Google Scholar
  64. Lawn RJ, Williams RW, Imrie BC (1988) Potential of wild germplasm as a source of tolerance to environmental stresses in mungbean. In: Shanmugasundaram S, McLean BT (eds) Proc 2nd International Symposium on Mungbean. AVRDC, Taiwan, pp 136–145Google Scholar
  65. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet 44:391–401Google Scholar
  66. Maréchal R, Mascherpa JM, Stanier F (1978) Etude taxonomique d’un groupe complexe d’espècies des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques traitées par l’analyse informatique. Boissiera 28:1–273Google Scholar
  67. Menancio-Hautea D, Kumar L, Danesh D, Young ND (1992) A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2N=2X=22). In: O’Brien SJ (ed) Genome maps. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 6.259–6.261Google Scholar
  68. Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993) Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810CrossRefGoogle Scholar
  69. Menendez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217CrossRefGoogle Scholar
  70. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  71. Miller TE (1983) Preferential transmission of alien chromosomes in wheat. Kew Chromosome Conference II, London, pp 173–182Google Scholar
  72. Miura K, Ishimoto M, Yamanaka N, Miyazaki S, Hiramatsu M, Nakajima Y, Hirano K, Kitamura K, Miyazaki S (1996) Effects of bruchid-resistant mungbean meal on growth and blood-biochemical values in mice. Jircas J 3:23–31Google Scholar
  73. Miyagi M, Humphry M, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110:151–156PubMedCrossRefGoogle Scholar
  74. Mohammad-Lassim MB, Chin HF, Abdullah WD (1984) The effects of weathering on mungbean (Vigna radiata (L.) Wilczek) seed quality. Pertanika 7:77–81Google Scholar
  75. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Meth Enzy 155:335–350CrossRefGoogle Scholar
  76. Murray MG, Palmer JD, Cuellar RE, Thompson WF (1979) Deoxyribonucleic acid sequence organisation in the mung bean genome. Biochemistry 18:5259–5266PubMedCrossRefGoogle Scholar
  77. O’Brien GP, Webb RI, Uwins PJR, Desmarchelier PM, Imrie BC (1992) Suitability of the environmental scanning electron microscope for studies of bacteria on mungbean seeds. J Comp-Ass Microsc 4:225–229Google Scholar
  78. Ouedraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillespie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45:175–188PubMedCrossRefGoogle Scholar
  79. Pal M, Ghosh U, Chandra M, Pal A, Biswas BB (1991) Transformation and regeneration of mung bean (Vigna radiata). Ind J Biochem Biophys 28:449–455Google Scholar
  80. Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genome of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537PubMedCrossRefGoogle Scholar
  81. Palmer JD (1992) Comparison of chloroplast and mitochondrial genome evolution in plants. In: Herrman RG (ed) Plant Gene Research: Cell Organelles. Springer, Berlin Heidelberg New York, pp 99–133Google Scholar
  82. Poehlman JM (1991) The Mungbean. Oxford and IBH, New DelhiGoogle Scholar
  83. Prasad S, Jawali N (1998) Frequency of di-, tri-, and tetranucleotide repeats in mungbean. In: DNA Technologies: Forensic and Other Applications. 23–24 Feb 1998, Hyderabad, IndiaGoogle Scholar
  84. Purseglove JW (1968) Tropical Crops. Dicotyledons I. Longmans, Harlow, UK, p 331Google Scholar
  85. Rebetzke G (1994) Attributes of potential adaptive and agronomic significance in the wild mungbean (Vigna radiata (L.) Wilczek ssp. sublobata (Roxb.) Verdc.). Masters Dissertation, Univ of Queensland, Brisbane, AustraliaGoogle Scholar
  86. Saravanakumar P, Kaga A, Tomooka N, Vaughan DA (2004) AFLP and RAPD analysis of intra-and interspecific variation in some Vigna subgenus Ceratotropis (Leguminosae) species. Aust J Bot 52:417–424CrossRefGoogle Scholar
  87. Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797PubMedCrossRefGoogle Scholar
  88. Smartt J (1984) Gene pools in grain legumes. Econ Bot 38:24–35Google Scholar
  89. Smartt J (1990) Grain Legumes. Evolution and Genetic Resources. Cambridge University Press, Cambridge, p 371Google Scholar
  90. Soria JA, Quebral FC (1973) Occurrence and development of powdery mildew on mungbean. Philippine Agric 57:158–177Google Scholar
  91. Sugawara F, Ishimoto M, Le-Van N, Koshino H, Uzawa J, Yoshida S, Kitamura K (1996) Insecticidal peptide from mungbean: a resistant factor against infestation with azuki bean weevil. J Agric Food Chem 44:3360–3364CrossRefGoogle Scholar
  92. Srinives P (1991) Breeding for resistance to diseases and pests of mungbean in Thailand. In: Green SK, Kim D (eds) Proc Int Workshop on Mungbean Yellow Mosaic Virus, 2–3 July 1991, Bangkok, Thailand, pp 59–67Google Scholar
  93. Talekar NS (1988) Biology, damage and control of bruchid pests of mungbean. In: Shanmugasundaram S, McLean BT (eds) Mungbean. Proc 2nd Int Symp on Mungbean, AVRDC, Taiwan, pp 329–342Google Scholar
  94. Teraishi M, Kaga A, Aoyama K, Sugawara F, Kawasaki S, Ishimoto M (2000) Genomic information of the bruchid resistance locus, Br, in mungbean (Vigna radiata (L.) Wilkzek). In: Proc 6th Int Congr of Plant Mol Biol, Quebec, S16–26Google Scholar
  95. Timmerman-Vaughan GM, McCallum JA, Frew TJ, Weeden NF, Russell AC (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea (Pisum sativum L.). Theor Appl Genet 93:431–439CrossRefGoogle Scholar
  96. Tivarekar S, Eapen S (2001) High frequency plant regeneration form immature cotyledons of mungbean. Plant Cell Tiss Org Cult 45:165–168Google Scholar
  97. Tomer RPS, Kumari P (1991) Hard seed studies in black gram (Vigna mungo L.). Seed science and technology 19:51–56Google Scholar
  98. Verdcourt B (1970) Studies in the Leguminosae-Papilionoideae for the flora of tropical East Africa. IV. Kew Bull 24:507–569Google Scholar
  99. Vijayalakshmi P, Amirthaveni S, Devadas RP, Weinberger K, Tsou SCS, Shanmugasundaram S (2003) Enhanced bioavailability of iron from mungbeans and its effects on health of school children. AVRDC Technical Bulletin No. 30, Shanhua, TaiwanGoogle Scholar
  100. Vishnu-Mittre A (1974) Palaeobotanical evidence in India. In: Hutchison J (ed) Evolutionary Studies in World Crops. Cambridge University Press, Cambridge, UK, pp 3–30Google Scholar
  101. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  102. Wang XW, Kaga A, Tomooka N, Vaughan DA (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 109:352–360PubMedGoogle Scholar
  103. Watt EE, Poehlman JM, Cumbie BG (1977) Origin and composition of a texture layer on seeds of mung bean. Crop Sci 17:121–125CrossRefGoogle Scholar
  104. Weinberger K (2003) Impact analysis on mungbean research in south and southeast Asia. AVRDC Processing No. 99.9117.5, Shanhua, TaiwanGoogle Scholar
  105. Williams RW (1989) A study of the causes of, and selection for resistance to weather damage in mungbean (Vigna radiata (L.) Wilczek; V. mungo (L.) Hepper). PhD dissertation, University of Queensland, Brisbane, AustraliaGoogle Scholar
  106. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  107. Williams RW, Lawn RJ, Imrie BC, Byth DE (1995 a) Studies on water damage in mungbean. I. Effect of weathering on seed quality and viability. Aust J Agric Res 46:887–899CrossRefGoogle Scholar
  108. Williams RW, Lawn RJ, Imrie BC, Byth DE (1995 b) Studies on weather damage in mungbean. II. Electrical conductivity of seed leachate as an assay of level of damage. Aust J Agric Res 46:901–907CrossRefGoogle Scholar
  109. Williams RW, Lawn RJ, Imrie BC, Byth DE (1995 c) Studies on weather damage in mungbean. III. Development of a system for measuring genotypic variation in resistance to weathering. Aust J Agric Res 46:909–920CrossRefGoogle Scholar
  110. Young ND, Danesh D, Menancio-Hautea D, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87:243–249CrossRefGoogle Scholar
  111. Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS, Shanmugasundaram S, Kim D-H (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet 84:839–844CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. J. Lambrides
    • 1
  • I. D. Godwin
    • 1
  1. 1.School of Land and Food Sciences, Plant Improvement GroupThe University of QueenslandSt LuciaAustralia

Personalised recommendations