Advertisement

Cowpea

  • Michael P. Timko
  • Jeff D. Ehlers
  • Philip A. Roberts
Part of the Genome Mapping and Molecular Breeding in Plants book series (GENMAPP, volume 3)

Keywords

Amplify Fragment Length Polymorphism Amplify Fragment Length Polymorphism Marker Vigna Unguiculata Azuki Bean Cultivar Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahenkora K, Adu-Dapaah HK, Agyemang A (1998) Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp.) leaves. Plant Foods Hum Nutr 52:221–229PubMedCrossRefGoogle Scholar
  2. Ajibade SR, Weeden NF, Chite SM (2000) Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111:47–55CrossRefGoogle Scholar
  3. Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139PubMedGoogle Scholar
  4. Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445CrossRefGoogle Scholar
  5. Amirhusin B, Shade RE, Koiwa H, Hasegawa PM, Bressan RA, Murdock LL, Zhu-Salzman K (2004) Soyacystatin N inhibits proteolysis of wheat alpha-amylase inhibitor and potentiates toxicity against cowpea weevil. J Econ Entomol 97:2095–2100PubMedGoogle Scholar
  6. Avenido RA, Dimaculangan JG, Welgas JN, Del Rosario EE (2004) Plant regeneration via direct shoot organogenesis from cotyledons and cotyledonary node explants of pole sitao (Vigna unguiculata [L.] Walp. var sesquipedalis [L.] Koern.). Phillipine Agric Sci 87:457–462Google Scholar
  7. Ba FS, Pasquet RE, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resource Crop Evol 51:539–550CrossRefGoogle Scholar
  8. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500PubMedCrossRefGoogle Scholar
  9. Boukar O, Kong L, Singh BB, Murdock L, Ohm HW (2004) AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci 44:1259–1264CrossRefGoogle Scholar
  10. Bressani R (1985) Nutritive value of cowpea. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. Wiley, New York, pp 353–359Google Scholar
  11. Carsky RJ, Vanlauwe B, Lyasse O (2002) Cowpea rotation as a resource management technology for cereal-based systems in the savannas of West Africa. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 252–266Google Scholar
  12. Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137:81–94CrossRefGoogle Scholar
  13. Chida Y, Okazaki K, Karasawa A, Akashi K, Nakazawa-Nasu Y, Hase S, Takashi H, Ehara Y (2000) Isolation of molecular markers linked to the Cry locus conferring resistance to cucumber mosaic cucumovirus infection in cowpea. J Gen Plant Path 66:242–250CrossRefGoogle Scholar
  14. Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:258–266CrossRefGoogle Scholar
  15. Craufurd PQ, Summerfield RJ, Ellis RH, Roberts EH (1997) Photoperiod, temperature and the growth and development of cowpea (Vigna unguiculata). In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). Sayce, Devon, UK, pp 75–86Google Scholar
  16. Daoust RA, Roberts DW, Das Neves BP (1985) Distribution, biology and control of cowpea pests in Latin America. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. Wiley, New York, pp 249–264Google Scholar
  17. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32PubMedCrossRefGoogle Scholar
  18. Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money matters. (I) Costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234CrossRefGoogle Scholar
  19. Dubcovsky J (2004) Marker-assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898CrossRefGoogle Scholar
  20. Duivenbooden van H, Abdoussalam S, Mohamed AB (2002) Impact of climate change on agricultural production in the Sahel-Part 2. Case study for groundnut and cowpea in Niger. Climat Change 54:349–368CrossRefGoogle Scholar
  21. Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679CrossRefGoogle Scholar
  22. Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp). Field Crops Res 53:187–204CrossRefGoogle Scholar
  23. Ehlers JD, Ferry RL, Hall AE (2002 a) Cowpea breeding in the USA: new varieties and improved germplasm. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 62–77Google Scholar
  24. Ehlers JD, Matthews WC, Hall AE, Roberts PA (2002 b) Breeding and evaluation of cowpeas with high levels of broad-based resistance to root-knot nematodes. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 41–51Google Scholar
  25. Elawad HOA, Hall AE (1987) Influences of early and late nitrogen fertilization on yield and nitrogen fixation of cowpea under well-watered and dry field conditions. Field Crops Res 15:229–244CrossRefGoogle Scholar
  26. Fatokun CA, Danesh D, Young ND, Stewart EL (1993 a) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86:97–104CrossRefGoogle Scholar
  27. Fatokun CA, Danesh D, Menancio-Hautea D, Young ND (1993 b) A linkage map for cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers. In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 6.256–6.258Google Scholar
  28. Federoff NV (1989) About maize transposable elements and development. Cell 56:181–191CrossRefGoogle Scholar
  29. Fery RL (1990) The cowpea: production, utilization, and research in the United States. Hort Rev 12:197–222Google Scholar
  30. Fery RL (2002) New opportunities in Vigna. In: Janick J, Whipkey A (eds) Trends in New Crops and New Uses. ASHS, Alexandria, VA, pp 424–428Google Scholar
  31. Flavell AJ, Pearce S, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844PubMedCrossRefGoogle Scholar
  32. Galasso I, Harrison GE, Pignone D, Brandes A, Heslop-Harrison JS (1997) The distribution and organization of Ty1-copia-like retrotransposable elements in the genome of Vigna unguiculata (L.) Walp. (cowpea) and its relatives. Ann Bot 80:327–333CrossRefGoogle Scholar
  33. Gowda BS, Miller JL, Rubin SS, Sharma DR, Timko MP (2002) Isolation, sequence analysis, and linkage mapping of resistance-gene analogs in cowpea (Vigna unguiculata L. Walp.). Euphytica 126:365–377CrossRefGoogle Scholar
  34. Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454CrossRefGoogle Scholar
  35. Hall AE, Patel PN (1985) Breeding for resistance to drought and heat. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. Wiley, New York, pp 137–151Google Scholar
  36. Hall AE, Singh BB, Ehlers JD (1997) Cowpea breeding. Plant Breed Rev 15:215–274Google Scholar
  37. Hall AE, Ismail AM, Ehlers JD, Marfo KO, Cisse N, Thiaw S, Close TJ (2002) Breeding cowpeas for tolerance to temperature extremes and adaptation to drought. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 14–21Google Scholar
  38. Hall AE, Cisse N, Thiaw S, Elawad HOA, Ehlers JD, Ismail A, Fery R, Roberts P, Kitch LW, Murdock LL, Boukar O, Phillips RD, McWatters KH (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Res 82:103–134CrossRefGoogle Scholar
  39. Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. African J Biotechnol 2:211–218Google Scholar
  40. Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci USA 96:13566–13570 http://www.bioline.org.br/request?jb03044 PubMedCrossRefGoogle Scholar
  41. Kaga A, Tomooka N, Egawa Y, Hosaka K, Kamijima O (1996a) Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica 88:17–24CrossRefGoogle Scholar
  42. Kaga A, Ohnishi M, Ishii T, Kamijima O (1996b) A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis×V. nakashimae). Theor Appl Genet 93:658–663CrossRefGoogle Scholar
  43. Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154CrossRefGoogle Scholar
  44. Koona P, Osisanya EO, Jackai LEN, Tamo M, Markham RH (2002) Resistance in accessions of cowpea to the Coreid Pod-Bug Clavigralla tomentosicollis (Hemiptera: Coreidae). J Econ Entomol 95:1281–1288PubMedCrossRefGoogle Scholar
  45. Kwapata MB, Hall AE (1985) Effects of moisture regime and phosphorus on mycorrhizal infection, nutrient uptake, and growth of cowpeas [Vigna unguiculata (L.) Walp.]. Field Crops Res 12:241–250CrossRefGoogle Scholar
  46. Lane JA, Moore THM, Child DV, Cardwell KF (1996) Characterization of virulence and geographic distribution of Striga gesnerioides on cowpea in West Africa. Plant Dis 80:299–301CrossRefGoogle Scholar
  47. Lane JA, Child DV, Reiss GC, Entcheva V, Bailey JA (1997) Crop resistance to parasitic plants. In: Crute IR et al (eds) The Gene-for-Gene Relationship in Plant-Parasite Interactions. CAB, Wallingford, UK, pp 81–97Google Scholar
  48. Langyintuo AS, Lowenberg-DeBoer J, Faye M, Lambert D, Ibro G, Moussa B, Kergna A, Kushwaha S, Musa S, Ntoukam G (2003) Cowpea supply and demand in West Africa. Field Crops Res 82:215–231CrossRefGoogle Scholar
  49. Li J, He G, Gepts P, Prakash CS (1999) Development of a genetic map for cowpea (Vigna unguiculata) using DNA markers. In: Plant & Animal Genome VII Conf, San Diego, p 327Google Scholar
  50. Machuka J (2002) Potential role of transgenic approaches in the control of cowpea insect pests. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 213–232Google Scholar
  51. Machuka J, Adesoye A, Obembe OO (2002) Regeneration and genetic transformation in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 185–196Google Scholar
  52. Marechal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un group complexe d’especes des genres Phaseolus et Vigna (Papillionaceae) sur la base de donnees morphologiques et polliniques traitees par l’analyse informatique. Boissiera 28:1–273Google Scholar
  53. Menancio-Hautea D, Kumar L, Danesh D, Young ND (1993a) A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2N=2X=22). In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms. Genetic maps 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 6.259–6.261Google Scholar
  54. Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993b) Comparative genome analysis of mung bean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810CrossRefGoogle Scholar
  55. Menéndez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217CrossRefGoogle Scholar
  56. Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40:329–337CrossRefGoogle Scholar
  57. Myers GO, Fatokun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L. Walp.). Euphytica 91:181–187Google Scholar
  58. Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, Tefera H, Nelson RJ (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44CrossRefGoogle Scholar
  59. Ng Q, Padulosi S (1988) Cowpea genepool distribution and crop improvement. In: Ng Q, Perrino P, Attere F, Zedan H (eds) Crop Genetic Resources of Africa, Vol II. IBPGR, Rome, pp 161–174Google Scholar
  60. Nielson SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop Sci 33:469–472CrossRefGoogle Scholar
  61. Nielson SS, Ohler TA, Mitchell CA (1997) Cowpea leaves for human consumption: production, utilization, and nutrient composition. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). Sayce, Devon, UK, pp 326–332Google Scholar
  62. Ogundiwin EA, Fatokun CA, Thottappilly G, Aken’Ova ME, Pillay M (2000) Genetic linkage map of Vigna vexillata based on DNA markers and its potential usefulness in cowpea improvement. In: Abstracts, World Cowpea Research Conference III, 4–7 September 2000, Ibadan, Nigeria, p 19Google Scholar
  63. Ouédraogo JT, Maheshwari V, Berner D, St-Pierre C-A, Belzile F, Timko MP (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036CrossRefGoogle Scholar
  64. Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillespie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002a) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and biological resistance traits. Genome 45:175–188PubMedCrossRefGoogle Scholar
  65. Ouédraogo JT, Tignegre J-B, Timko MP, Belzile FJ (2002 b) AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45:787–793PubMedCrossRefGoogle Scholar
  66. Padulosi S, Ng NQ (1997) Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). Sayce, Devon, UK, pp 1–12Google Scholar
  67. Pant KC, Chandel KPS, Joshi BS (1982) Analysis of diversity in Indian cowpea genetic resources. SABRO J 14:103–111Google Scholar
  68. Pasquet RS (1998) Morphological study of cultivated cowpea, Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv gr Melanophthalmus. Agronomie 18:61–70Google Scholar
  69. Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119CrossRefGoogle Scholar
  70. Phillips RD, McWatters KH, Chinannan MS, Hung Y, Beuchat LR, Sefa-Dedeh S, Saki-Dawson E, Ngoddy P, Nnanyelugo D, Enwere J, Komey NS, Liu K, Mensa-Wilmot Y, Nnanna I, Okeke C, Prinyawiwatkul W, Saalia FK (2003) Utilization of cowpeas for human food. Field Crops Res 82:193–213CrossRefGoogle Scholar
  71. Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312PubMedCrossRefGoogle Scholar
  72. Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Science 167:195–206CrossRefGoogle Scholar
  73. Purseglove JW (1968) Tropical Crops — Dicotyledons. Longman, London, UKGoogle Scholar
  74. Rangel A, Saraiva K, Schwengber P, Narciso MS, Domont GB, Ferreira ST, Pedrosa C (2004) Biological evaluation of a protein isolate from cowpea (Vigna unguiculata) seeds. Food Chem 87:491–499CrossRefGoogle Scholar
  75. Roberts PA, Matthews WC, Ehlers JD (1996) New resistance to virulent root-knot nematodes linked to the Rk locus of cowpea. Crop Sci 36:889–894CrossRefGoogle Scholar
  76. Roberts PA, Ehlers JD, Hall AE, Matthews WC (1997) Characterization of new resistance to root-knot nematodes in cowpea. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). Sayce, Devon, UK, pp 207–214Google Scholar
  77. Sanden B (1993) Blackeye varietal and irrigation cutoff trial. In: University of California Dry Bean Research — 1993. Progr Rep California Dry Bean Advisory Board, Dinuba, CA, pp 120–121Google Scholar
  78. Sanginga N, Dashiell KE, Diels J, Vanlauwe B, Lyasse O, Carsky RJ, Tarawali S, Asafo-Adjei B, Menkir A, Schulz S, Singh BB, Chikoye D, Keatinge D, Ortiz R (2003) Sustainable resource management coupled to resilient germplasm to provide new intensive cereal-grain-legume-livestock systems in the dry savanna. Agric Ecosyst Environ 100:305–314CrossRefGoogle Scholar
  79. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395CrossRefGoogle Scholar
  80. Singh BB (2002) Recent genetic studies in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 3–13Google Scholar
  81. Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278CrossRefGoogle Scholar
  82. Singh BB, Tarawali SA (1997) Cowpea and its improvement: key to sustainable mixed crop/livestock farming systems in West Africa. In: Renard C (ed) Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems. CAB in Association with ICRISAT and ILRI, Wallingford, UK, pp 79–100Google Scholar
  83. Singh BB, Ehlers JD, Sharma B, Freire Filho FR (2002) Recent progress in cowpea breeding. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 22–40Google Scholar
  84. Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VI, Gepts P (1994) Evolution of genetic diversity during the domestication of common bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635CrossRefGoogle Scholar
  85. Sonnante G, Piergiovanni AR, Ng QN, Perrino P (1996) Relationships of Vigna unguiculata (L.) Walp., V. vexillata (L.) A. Rich., and species of section Vigna based on isozyme variation. Genet Resource Crop Evol 43:157–165CrossRefGoogle Scholar
  86. Steele WM (1976) Cowpea, Vigna unguiculata (Leguminosae-Papillionatae). In: Simmonds NW (ed) Evolution of Crop Plants. Longman, London, pp 183–185Google Scholar
  87. Steele WM, Mehra KL (1980) Structure, evolution and adaptation to farming systems and environments in Vigna. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Science. Royal Botanic Gardens, Kew, UK, pp 393–404Google Scholar
  88. Tarawali SA, Singh BB, Peters M, Blade SF (1997) Cowpea haulms as fodder. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). Sayce, Devon, UK, pp 313–325Google Scholar
  89. Tarawali SA, Singh BB, Gupta SC, Tabo R, Harris F, Nokoe S, Fernández-Rivera S, Bationo A, Manyong VM, Makinde K, Odion EC (2002) Cowpea as a key factor for a new approach to integrated crop-livestock systems research in the dry savannas of West Africa. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 233–251Google Scholar
  90. Tosti N, Negri V (2002) Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata ssp. unguiculata) landraces. Genome 45:656–660CrossRefGoogle Scholar
  91. Vaillancourt RE, Weeden NF (1992) Chloroplast DNA polymorphism suggests a Nigerian center of domestication for the cowpea, Vigna unguiculata (Leguminosae). Am J Bot 79:1194–1199CrossRefGoogle Scholar
  92. Vaillancourt RE, Weeden NF (1996) Vigna unguiculata and its position within the genus Vigna. In: Pickersgill B, Lock JM (eds) Advances in Legume Systematics 8: Legumes of Economic Importance. Royal Botanic Gardens, Kew, UK, pp 89–93Google Scholar
  93. Vaillancourt RE, Weeden NF, Barnard JD (1993) Isozyme diversity in the cowpea species complex. Crop Sci 33:606–613CrossRefGoogle Scholar
  94. Van Le B, de Carvalho MHC, Zully-Fodil Y, Thi ATP, Van KTT (2002) Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin layer explants. J Plant Physiol 159:1255–1258CrossRefGoogle Scholar
  95. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  96. Wein HC, Summerfield RJ (1980) Adaptation of cowpeas in West Africa: Effects of photoperiod and temperature responses in cultivars of diverse origin. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Science. Royal Botanic Gardens, Kew, UK, pp 405–417Google Scholar
  97. Williams JGK, Kubelik AR, Livak JJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michael P. Timko
    • 1
  • Jeff D. Ehlers
    • 2
  • Philip A. Roberts
    • 3
  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  3. 3.Department of NematologyUniversity of CaliforniaRiversideUSA

Personalised recommendations