• Y. Lokko
  • E. Okogbenin
  • C. Mba
  • A. Dixon
  • A. Raji
  • M. Fregene
Part of the Genome Mapping and Molecular Breeding in Plants book series (GENMAPP, volume 3)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AMML, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–661PubMedCrossRefGoogle Scholar
  2. Akano AO, Dixon AGO, Mba C, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to the cassava mosaic disease (CMD). Theor Appl Genet 105:521–525PubMedCrossRefGoogle Scholar
  3. Allen AC (1994) The origin of Manihot Esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol 41:133–150CrossRefGoogle Scholar
  4. Amma CSE, Sheela MN, Pillai PKT (1995) Combining ability heterosis and gene action for three major quality traits in cassava. J Root Crops 21(1):24–29Google Scholar
  5. Anderson JV, Horvath DP (2001) Random sequencing of cDNAs and identification of mRNAs. Weed Sci 49:581–589CrossRefGoogle Scholar
  6. Anderson JV, Gedil M, Horvath DP, Dixon A (2001) Preliminary studies directed towards the development of Euphorbiaceae-specific microarrays. In: Taylor NJ, Ogbe F, Fauquet CM (eds) 5th Int Sci Meet Cassava Biotechnol Network: Abstr Book. Donald Danforth Plant Science Center, St. Louis, MO, pp S5–02Google Scholar
  7. Anderson JV, Delseny M, Fregene MA, Jorge V, Mba C, Lopez C, Restrepo S, Soto M, Piegu B, Verdier V, Cooke R, Tohme J, Horvath DP (2005) An EST resource for cassava and other species of Euphorbiaceae. Plant Mol Biol 56(4):537–539Google Scholar
  8. Angel F, Arias D, Tohme J, Iglesias C, Roca W (1993) Towards the construction of a molecular map of cassava (Manihot esculenta Crantz): comparison of restriction enzymes and probe source in detecting RFLPs. J Biotechnol 31:103–113PubMedCrossRefGoogle Scholar
  9. Awoleye F, van Duren M, Dolezel J, Novak FJ (1994) Nuclear DNA content in in vitro induced somatic polyploidisation cassava (Manihot esculenta Crantz) breeding. Euphytica 76:195–202CrossRefGoogle Scholar
  10. Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations in Maize (Zea Mays). Theor Appl Genet 82:636–644CrossRefGoogle Scholar
  11. Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic improvement methodologies, mapping and costs. Theor Appl Genet 67:35–43CrossRefGoogle Scholar
  12. Beckmann JS, Soller M (1986) Restriction fragment length polymorphisms in plant genetic improvement. Oxford Surveys Plant Mol Cell Biol 3:196–250Google Scholar
  13. Best R, Henry G (1994) Cassava Towards Year 2000. In: Intl Network for Cassava Genet Resour, Columbia, 18–23 August 1992. International Crop Network series, No. 10, International Plant Genetic Resource Institute, Rome, Italy, pp 12–15Google Scholar
  14. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–330PubMedGoogle Scholar
  15. Brown TA (1999) Genomes. BIOS, New York, p 472Google Scholar
  16. Bryne D (1984) Breeding cassava. Plant Breed Rev 2:73–134Google Scholar
  17. Ceballos H, Fregene M, Lentini Z, Sanchez T, Puentes YI, Pérez JC, Rosero A, Tofino AP (2006) Development and identification of high-value cassava clones. Acta Hort (ISHS) 703:63–70 Scholar
  18. Chavarriaga-Aguirre P, Maya MM, Bonierbale MW, Kresovich S, Fregene MA, Tohme J, Kochert G (1998) Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet 97:493–501CrossRefGoogle Scholar
  19. CIAT (1996) Development of Cassava Germplasm for the Drier Tropics and Subtropical Agroecosystems of Africa, Asia and Latin America. A Report by CIAT and CNMPF/EMBRAPA to the International Fund for Agricultural Development (IFAD). CIAT, Cali, ColombiaGoogle Scholar
  20. CIAT (1999) Programme for the Enhancement of Income-Generation Potential through the Development and Transfer of Improved Cassava Genetic Material and Adoption of Post-Harvest Technologies. A Report by CIAT and CNMPF/EMBRAPA to the International Fund for Agricultural Development (IFAD). CIAT, Cali, ColombiaGoogle Scholar
  21. CIAT (2003) Annual Report IP3. Improved Cassava for the Developing World. CIAT, Cali, Colombia, pp 8-1–8-3Google Scholar
  22. Cock JH (1985) Cassava, New Potential for a Neglected Crop. West View, Boulder, CO, p 191Google Scholar
  23. Cortes DF, Reily K, Okogbenin E, Beeching JR, Iglesias C, Tohme J (2002) Mapping wound response genes involved in post-harvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz). Euphytica 128:47–53CrossRefGoogle Scholar
  24. Edwards MD, Page NJ (1994) Evaluation of marker-assisted selection through computer simulation. Theor Appl Genet 88:376–382CrossRefGoogle Scholar
  25. Ekanayake IJ, Osiru DSO, Porto M (1997) Morphplogy of cassava. International Institute of Tropical Agriculture (IITA) Research Guide 61. Training Program, IITA, Ibadan, NigeriaGoogle Scholar
  26. FAO (2000) http://www.fao.orgGoogle Scholar
  27. Fregene M (2000) Marking progress: collaboration to improve cassava. In: Kinley D (ed) Synergies in Science. CGIAR (Consultative Group on International Agricultural Research), Washington, DC, pp 6–7Google Scholar
  28. Fregene MF, Angel F, Gomez R, Rodriguez P, Chavarriaga, Bonierbale M, Roca W, Tohme J (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441CrossRefGoogle Scholar
  29. Fregene M, Okogbenin E, Mba C, Angel F, Suarez MC, Gutiérez J, Chavarriaga P, Roca W, Bonierbale M, Tohme J (2001) Genome mapping in cassava improvement: challenges, achievements and opportunities. Euphytica 120: 159–165CrossRefGoogle Scholar
  30. Fregene M, Okogbenin E, Marin J, Moreno I, Ariyo O, Akinwale O, Barrera E, Ceballos H, Dixon A (2006) Molecular marker assisted selection (MAS) of resistance to the cassava mosaic disease (CMD). Euphytica (in press)Google Scholar
  31. Fukuda WM, Saad N (2001) Participatory Research in Cassava Breeding with Farmers in North eastern Brazil. Working Document No. 99, CNPMF, Cruz das Almas-Bahia, Brazil, p 42Google Scholar
  32. Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659PubMedCrossRefGoogle Scholar
  33. Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19(23):6553–6558PubMedCrossRefGoogle Scholar
  34. Gomez R, Angel F, Bonierbale MW, Rodriguez F, Tohme J, Roca WM (1996) Inheritance of random amplified polymorphic DNA markers in cassava (Manihot esculenta Crantz). Genome 39:1039–1043PubMedGoogle Scholar
  35. Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. Symposium: Plant Breeding: A New Tool for Fighting Micronutrient Malnutrition. J Nutr 132(3):500S–502SPubMedGoogle Scholar
  36. Hahn SK, Keyser J (1985) Cassava: a basic food of Africa. Outlook Agric 14:95–100Google Scholar
  37. Hahn SK, John C, Isoba G, Ikoun T (1989) Resistance breeding in root and tuber crops at the International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria. Crop Protection 8:147–168CrossRefGoogle Scholar
  38. Hauge BM, Haney SM, Cartinhour S, Cherry JM, Goodman HM, Koornneof M, Stam P, Chang C, Kempin S, Medrano L, Meyerowitz EM (1993) An integrated genetic/RFLP map of Arabidopsis thaliana genome. Plant J 3(5):745–754CrossRefGoogle Scholar
  39. Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragments length polymorphisms. Genetics 120:947–958PubMedGoogle Scholar
  40. IITA (1980) Annual Report of the International Institute of Tropical Agriculture. IITA, Ibadan, NigeriaGoogle Scholar
  41. IITA (1992) Annual Report of the International Institute of Tropical Agriculture. IITA, Ibadan, NigeriaGoogle Scholar
  42. IITA (1999) Annual Report Project 14. International Institute of Tropical Agriculture, IITA, Ibadan, NigeriaGoogle Scholar
  43. IITA (2000 a) Enhancement of Income-Generation Potential through the Development and Transfer of Improved Cassava Genetic Material and Adoption of Post-Harvest Technologies in Africa. A report by IITA to the International Fund for Agricultural Development (IFAD). IITA, Ibadan, Nigeria, p 200Google Scholar
  44. IITA (2000 b) Impact: The Contribution of IITA-improved cassava to food security in sub-Saharan Africa: an impact study. IITA, Ibadan, Nigeria, p 10Google Scholar
  45. Jaramillo GN, Morante N, Perez JC, Calle F, Ceballos H, Arias B, Bellotti AC (2005) Diallel analysis in cassava (Manihot esculenta Crantz) adapted to the mid-altitude valleys environment. Crop Sci 45:1058–1063CrossRefGoogle Scholar
  46. Jennings DL, Hershey CH (1985) Cassava breeding: a decade of progress from international programmes. In: Russell GE (ed) Progress in Plant Breeding 1. Butterworths, Cambridge, UK, pp 89–116Google Scholar
  47. Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000) Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz). Theor Appl Genet 101:865–872CrossRefGoogle Scholar
  48. Jorge V, Fregene MA, Velez CM, Duque MC, Tohme J, Verdier V (2001) QTL analysis of filed resistance to Xanthomonas axonopodis pv manihotis in cassava. Theor Appl Genet 102:564–571CrossRefGoogle Scholar
  49. Jos JS, Nair NG (1979) Pachytene pairing in relation to pollen fertility in five cultivars of cassava. Cytologia (Tokyo) 44:813–820Google Scholar
  50. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  51. Kullaya A, Mtunda K, Kulembeka H, Ferguson M, Marin J, Ospina C, Barrera E, Jarvis A, Morante N, Ceballos H, Tohme J, Fregene M (2004) Molecular marker-assisted and farmer participatory improvement of cassava germplasm for farmer/market preferred traits in Tanzania. In: Alves A, Tohme J (eds) Adding Value to a Small-Farmer Crop. Proc 6th Int Sci Meet Cassava Biotechnol Network, 8–14 March 2004, CIAT, Cali, Colombia, Book of Abstr, p 70Google Scholar
  52. Lancaster PA, Brooks JE (1983) Cassava leaves as human food. Eco Bot 37(3):33–348Google Scholar
  53. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  54. Lefevre F, Charrier A (1993) Isozyme diversity within African Manihot germplasm. Euphytica 66:73–80CrossRefGoogle Scholar
  55. Liu BH (1998) Computational tools for study of complex traits. In: Paterson AH (ed) Molecular Dissection of Complex Traits. CRC, Boca Raton, FL, pp 43–79Google Scholar
  56. Lohmann S, Lehmann L, Tabiti K (2000) Fast and flexible single nucleotide polymorphism (SNP) detection with the LightCycler System. Biochemica 4:23–28Google Scholar
  57. Lokko Y, Gedil M, Dixon A, Offei S, Danquah E (2003) Identification of molecular markers associated with a new source of resistance to the cassava mosaic disease. In: Proc 8th Triennial Symp, Intl Soc for Tropical Root Crops — Africa Branch, 12–16 November 2001, Ibadan, Nigeria, pp 482–486Google Scholar
  58. Lokko Y, Gedil M, Dixon A (2004) QTLs associated with resistance to the cassava mosaic disease. In: Proc 4th Intl Crop Sci Congr, September 2004, Brisbane, Australia. Google Scholar
  59. Lynch M, Walsh B (1998) Genetic Analysis of quantitative traits. Sinauer Associates, Sunderland, MA, pp 985Google Scholar
  60. Magoon ML, Krishnan RK (1977) Extending the frontiers of genetic improvement in cassava. In: Leaky LA (ed) Proc 3rd Symp, International Society for Tropical Root Crops, 2–9 December 1973, IITA, Ibadan, Nigeria, pp 14–18Google Scholar
  61. Magoon ML, Krishnan R, Bai KV (1969) Morphology of pachytene chromosome and meiosis in Manihot esculenta Crantz. Cytologia 34:612–626Google Scholar
  62. Mba REC, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31CrossRefGoogle Scholar
  63. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistant genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  64. Moreno M, Tomkins J, Fregene M (2004) Positional cloning of CMD2 the gene that confers high level resistance to the cassava mosaic disease (CMD). In: Alves A, Tohme J (eds) Adding Value to a Small-Farmer Crop: Proc 6th Int Sci Meet Cassava Biotechnology Network. 8–14 March 2004, CIAT, Cali Colombia. Book of Abstr, p 163Google Scholar
  65. Ohlrogge J, Benning C (2000) Unravelling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228PubMedGoogle Scholar
  66. Okogbenin E, Fregene M (2002) Genetic mapping of early root bulking in an F1 mapping population of non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 106:58–66PubMedGoogle Scholar
  67. Okogbenin E, Fregene M (2003) Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 107:1452–1462PubMedCrossRefGoogle Scholar
  68. Okogbenin E, Marin J, Fregene M (2006) An SSR-based molecular genetic map of cassava. Euphytica 147:433–440CrossRefGoogle Scholar
  69. Olsen K, Schaal B (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591PubMedCrossRefGoogle Scholar
  70. Otim-Nape GW, Bua A, Baguma Y (1994) Accelerating the transfer of improved production technologies: Controlling African cassava mosaic virus disease epidemic in Uganda. Afr Crop Sci J 2:479–495Google Scholar
  71. Pillay M, Kenny ST (1996) Random amplified polymorphic DNA (RAPD) markers in hops, Humulus lupulus: level of genetic variability and segregation in F1 progeny. Theor Appl Genet 92:334–339CrossRefGoogle Scholar
  72. Quackenbush RC, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvisi B, Pertea G, Sultana R, White J (2001) The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 29:159–164PubMedCrossRefGoogle Scholar
  73. Rajendran PG (1989) Combining ability in cassava. J Root Crops 15(1):15–18Google Scholar
  74. Roa A, Maya MM, Durque M, Tohme J, Allen A, Bonierbale M (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95:741–750CrossRefGoogle Scholar
  75. Rogers DJ (1965) Some botanical and ethnological considerations of Manihot esculenta. Econ Bot 194:769–773Google Scholar
  76. Sanchez G, Restrepo S, Duque M, Fregene M, Bonierbale MW, Verdier V (1999) AFLP assessment of genetic variability in cassava accessions (Manihot esculenta Crantz) resistant and susceptible to the cassava bacterial blight (CBB). Genome 42:163–172PubMedCrossRefGoogle Scholar
  77. Sauer CO (1952) Agricultural Origins and Dispersals. American Geograpical Society, New YorkGoogle Scholar
  78. Schaal BA, Olson PD, Prinzie T, Carvalho CB, Tonukari J, Hayworth DA (1994) Phylogenetic analysis of the genus Manihot based on molecular markers. In: Roca WM, Thro AM (eds) Proc 1st Scientific Meeting of the Cassava Biotechnology Network, Cartagena, Colombia, 25–28 August 1992. Working Document No. 123, Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, pp 106–122Google Scholar
  79. Silvestre P, Arraudeaus M (1983) Le manioc. ACCT, coll. Techniques, Agricoles et Productions Tropicales. Maisonneuve & Larose, ParisGoogle Scholar
  80. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744CrossRefGoogle Scholar
  81. Suárez MC, Bernal A, Gutiérrez J, Tohme J, Fregene M (2000) Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome 43:62–67PubMedCrossRefGoogle Scholar
  82. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: New tools for an old science. Bio/Technology 7:257–264CrossRefGoogle Scholar
  83. Tomkins JP, Mahalingham R, Miller-Smith H, Goicoechea JL, Knapp HT, Wing RA (1999 a) A soybean bacterial artificial chromosome library for PI 437654 and the identification of clones associated with cyst nematode resistance. Plant Mol Biol 41:25–32PubMedCrossRefGoogle Scholar
  84. Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo S, Wing RA (1999 b) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424CrossRefGoogle Scholar
  85. Tomkins JP, Davis G, Main D, Duru N, Musket T, Goicoechea JL, Frisch DA, Coe Jr EH, Wing RA (2002) Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933CrossRefGoogle Scholar
  86. van Hal NLW, Vorst O, van Houwelingen AMML, Kok EJ, Peijnenburg A, Aharoni A, van Tunen AJ, Keijer J (2000) The application of microarrays in gene expression analysis. J Biotechnol 78:271–280PubMedCrossRefGoogle Scholar
  87. van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  88. Williams CG (1998) QTL mapping in outbreed pedigrees. In: Paterson AH (ed) Molecular Dissection of Complex Traits. CRC, Boca Raton, FL, pp 81–94Google Scholar
  89. Williams JGK, Kubelik AR, Livak KI, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  90. Wu KK, Burnquist W, Sorrels ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single dose restriction fragments. Theor Appl Genet 81:471–476Google Scholar
  91. Zeng ZB, Houle D, Cockerham CC (1990) How informative is Wright’s estimator of the number of genes affecting a quantitative character? Genetics 126:235–247PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Y. Lokko
    • 1
  • E. Okogbenin
    • 2
  • C. Mba
    • 3
  • A. Dixon
    • 1
  • A. Raji
    • 1
  • M. Fregene
    • 2
  1. 1.International Institute of Tropical Agriculture (IITA)IbadanNigeria
  2. 2.Centro Internacional de Agricultura TropicalCaliColombia
  3. 3.Plant Breeding Unit, Joint FAO/IAEA Agriculture and Biotechnology LaboratoryInternational Atomic Energy Agency LaboratoriesSeibersdorfAustria

Personalised recommendations