Alternative Splicing: Therapeutic Target and Tool

  • Mariano A. Garcia-Blanco
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 44)


Alternative Splice Cystic Fibrosis Transmembrane Conductance Regulator Duchenne Muscular Dystrophy Spinal Muscular Atrophy Survival Motor Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aartsma-Rus A, Janson AA et al. (2004) Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 74(1): 83-92PubMedGoogle Scholar
  2. Andreassi C, Jarecki J et al. (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10 (24): 2841-9PubMedGoogle Scholar
  3. Baron-Delage S, Abadie A et al. (2000) Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol Med 6(11): 957-968PubMedGoogle Scholar
  4. Black DL (2000) Protein diversity from alternative splicing: a challenge for bioin-formatics and post-genome biology. Cell 103(3): 367-370PubMedGoogle Scholar
  5. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72: 291-336PubMedGoogle Scholar
  6. Bracco L, Kearsey J (2003) The relevance of alternative RNA splicing to pharma-cogenomics. Trends Biotechnol 21(8): 346-353PubMedGoogle Scholar
  7. Brahe C, Vitali T et al. (2005) Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 13(2): 256-259PubMedGoogle Scholar
  8. Bremmer-Bout M, Aartsma-Rus A et al. (2004) Targeted exon skipping in trans-genic hDMD mice: A model for direct preclinical screening of human-specific antisense oligonucleotides. Mol Ther 10(2): 232-40PubMedGoogle Scholar
  9. Brichta L, Hofmann Y et al. (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12(19): 2481-2489PubMedGoogle Scholar
  10. Bruno IG, Jin W et al. (2004) Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet 13 (20): 2409-2420PubMedGoogle Scholar
  11. Buratti E, Baralle FE (2005) Another step forward for SELEXive splicing. Trends Mol Med 11(1): 5-9PubMedGoogle Scholar
  12. Buratti E, Baralle FE et al. (2003) Can a “patch” in a skipped exon make the pre-mRNA splicing machine run better? Trends Mol Med 9(6): 229-232; discussion 233-234PubMedGoogle Scholar
  13. Caceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mecha-nisms and involvement in human disease. Trends Genet 18(4): 186-193PubMedGoogle Scholar
  14. Carstens RP, Eaton JV et al. (1997) Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene 15(25): 3059-3065PubMedGoogle Scholar
  15. Cartegni L, Chew SL et al. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4): 285-298PubMedGoogle Scholar
  16. Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10(2): 120-125PubMedGoogle Scholar
  17. Celotto AM, Graveley BR (2002) Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. Rna 8(6): 718-724PubMedGoogle Scholar
  18. Chandrasekharan NV, Dai H et al. (2002) COX-3 a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning structure and expression. Proc Natl Acad Sci USA 99(21): 13926-13931PubMedGoogle Scholar
  19. Chang JG, Hsieh-Li HM et al. (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98(17): 9808-9813PubMedGoogle Scholar
  20. Chao H, Mansfield SG et al. (2003) Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat Med 9(8): 1015-1019PubMedGoogle Scholar
  21. Cooper TA (2005) Alternative splicing regulation impacts heart development. Cell 120 (1): 1-2PubMedGoogle Scholar
  22. Coovert DD, Le TT et al. (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6(8): 1205-1214PubMedGoogle Scholar
  23. Crooke ST (2004a) Antisense strategies. Curr Mol Med 4(5): 465-487PubMedGoogle Scholar
  24. Crooke ST (2004b) Progress in antisense technology. Annu Rev Med 55: 61-95PubMedGoogle Scholar
  25. Cui JG, Kuroda H et al. (2004) Cyclooxygenase-3 gene expression in Alzheimer hippocampus and in stressed human neural cells. Neurochem Res 29 (9): 1731-1737PubMedGoogle Scholar
  26. Daoud R, Mies G et al. (2002) Ischemia induces a translocation of the splicing factor tra2-beta 1 and changes alternative splicing patterns in the brain. J Neurosci 22(14): 5889-5899PubMedGoogle Scholar
  27. De Angelis FG, Sthandier O et al. (2002) Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Delta 48-50 DMD cells. Proc Natl Acad Sci USA 99(14): 9456-9461PubMedGoogle Scholar
  28. De Sandre-Giovannoli A, Bernard R et al. (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300(5628): 2055PubMedGoogle Scholar
  29. Deidda G, Rossi N et al. (2003) An archaeal endoribonuclease catalyzes cis- and trans-nonspliceosomal splicing in mouse cells. Nat Biotechnol 21(12): 1499-1504PubMedGoogle Scholar
  30. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90(18): 8673-8677PubMedGoogle Scholar
  31. Dunckley MG, Manoharan M et al. (1998) Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7(7): 1083-1090PubMedGoogle Scholar
  32. Dykxhoorn DM, Novina CD et al. (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4(6): 457-467PubMedGoogle Scholar
  33. Eperon IC, Muntoni F (2003) Response to Buratti et al.: Can a ‘patch’ in a skipped exon make the pre-mRNA splicing machine run better? Trends Mol Med 9 (6): 233-234Google Scholar
  34. Eriksson M, Brown WT et al. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937): 293-298PubMedGoogle Scholar
  35. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17(4): 419-437PubMedGoogle Scholar
  36. Friedman KJ, Kole J et al. (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 274(51): 36193-36199PubMedGoogle Scholar
  37. Garcia-Blanco M A (2003) Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J Clin Invest 112(4): 474-480PubMedGoogle Scholar
  38. Garcia Blanco M (2005) Making antisense of splicing. Current Opinion in Molecular Therapeutics, in pressGoogle Scholar
  39. Garcia-Blanco M A, Baraniak AP et al. (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22(5): 535-546PubMedGoogle Scholar
  40. Gorman L, Suter D et al. (1998) Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs. Proc Natl Acad Sci USA 95(9): 4929-4934PubMedGoogle Scholar
  41. Goyenvalle A, Vulin A et al. (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306(5702): 1796-1799PubMedGoogle Scholar
  42. Gunthert U, Stauder R et al. (1995) Are CD44 variant isoforms involved in human tumour progression? Cancer Surv 24: 19-42PubMedGoogle Scholar
  43. Helmken C, Hofmann Y et al. (2003) Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Hum Genet 114(1): 11-21PubMedGoogle Scholar
  44. Hommel JD, Sears RM et al. (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 9(12): 1539-1544PubMedGoogle Scholar
  45. Hong M, Zhukareva V et al. (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282(5395): 1914-1917PubMedGoogle Scholar
  46. Hutton M, Lendon CL et al. (1998) Association of missense and 5′-splice-site muta-tions in tau with the inherited dementia FTDP-17. Nature 393(6686): 702-705PubMedGoogle Scholar
  47. Johnson JM, Castle J et al. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302(5653): 2141-2144PubMedGoogle Scholar
  48. Kalbfuss B, Mabon SA et al. (2001) Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J Biol Chem 276(46): 42986-42993PubMedGoogle Scholar
  49. Kalnina Z, Zayakin P et al. (2005) Alterations of pre-mRNA splicing in cancer. Genes Chromosomes Cancer 42(4): 342-357PubMedGoogle Scholar
  50. Karras JG, Maier MA et al. (2001) Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-alpha chain. Biochemistry 40(26): 7853-7859PubMedGoogle Scholar
  51. Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splic-ing in spinal muscular atrophy. Nat Genet 34(4): 460-463PubMedGoogle Scholar
  52. Khoo B, Akker SA et al. (2003) Putting some spine into alternative splicing. Trends Biotechnol 21(8): 328-330PubMedGoogle Scholar
  53. Kole R, Vacek M et al. (2004) Modification of alternative splicing by antisense therapeutics. Oligonucleotides 14(1): 65-74PubMedGoogle Scholar
  54. Kole R, Williams T et al. (2004) RNA modulation repair and remodeling by splice switching oligonucleotides. Acta Biochim Pol 51(2): 373-378PubMedGoogle Scholar
  55. Lacerra G, Sierakowska H et al. (2000) Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA 97(17): 9591-9596PubMedGoogle Scholar
  56. Liu S, Asparuhova M et al. (2004) Inhibition of HIV-1 multiplication by antisense U7 snRNAs and siRNAs targeting cyclophilin A. Nucleic Acids Res 32 (12): 3752-3759PubMedGoogle Scholar
  57. Liu X, Jiang Q et al. (2002) Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat Biotechnol 20(1): 47-52PubMedGoogle Scholar
  58. Lorson CL, Hahnen E et al. (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96 (11): 6307-6311PubMedGoogle Scholar
  59. Lu QL, Mann CJ et al. (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9 (8): 1009-1014PubMedGoogle Scholar
  60. Lu QL, Rabinowitz A et al. (2005) Systemic delivery of antisense oligoribonu-cleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 102(1): 198-203PubMedGoogle Scholar
  61. Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expan-sion in metazoans. Nature 418(6894): 236-243PubMedGoogle Scholar
  62. Mann CJ, Honeyman K et al. (2001) Antisense-induced exon skipping and synthe-sis of dystrophin in the mdx mouse. Proc Natl Acad Sci USA 98(1): 42-47PubMedGoogle Scholar
  63. Mansfield SG, Chao H et al. (2004) RNA repair using spliceosome-mediated RNA trans-splicing. Trends Mol Med 10(6): 263-268PubMedGoogle Scholar
  64. Mercuri E, Bertini E et al. (2004) Pilot trial of phenylbutyrate in spinal muscular atrophy. Neuromuscul Disord 14(2): 130-135PubMedGoogle Scholar
  65. Millar DS, Lewis MD et al. (2003) Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for indi-viduals with short stature. Hum Mutat 21(4): 424-440PubMedGoogle Scholar
  66. Modrek B, Lee CJ (2003) Alternative splicing in the human mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34(2): 177-180PubMedGoogle Scholar
  67. Muntoni F, Torelli S et al. (2003) Dystrophin and mutations: one gene several pro-teins multiple phenotypes. Lancet Neurol 2(12): 731-740PubMedGoogle Scholar
  68. Muraki M, Ohkawara B et al. (2004) Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279(23): 24246-24254PubMedGoogle Scholar
  69. Musunuru K (2003) Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc Med 13(5): 188-195PubMedGoogle Scholar
  70. Nalla VK, Rogan PK (2005) Automated splicing mutation analysis by information theory. Hum Mutat 25(4): 334-342PubMedGoogle Scholar
  71. Pasman Z, Garcia-Blanco MA (1996) The 5′ and 3′ splice sites come together via a three dimensional diffusion mechanism. Nucleic Acids Res 24(9): 1638-1645PubMedGoogle Scholar
  72. Pergolizzi R G, Crystal RG (2004) Genetic medicine at the RNA level: modifica-tions of the genetic repertoire for therapeutic purposes by pre-mRNA transsplicing. C R Biol 327(8): 695-709PubMedGoogle Scholar
  73. Pramono ZA, Takeshima Y et al. (1996) Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynu-cleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 226(2): 445-449PubMedGoogle Scholar
  74. Puttaraju M, Jamison SF et al. (1999) Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat Biotechnol 17(3): 246-252PubMedGoogle Scholar
  75. Puttaraju M, DiPasquale J et al. (2001) Messenger RNA repair and restoration of protein function by spliceosome-mediated RNA trans-splicing. Mol Ther 4 (2): 105-114PubMedGoogle Scholar
  76. Resch A, Xing Y et al. (2004) Evidence for a subpopulation of conserved alterna-tive splicing events under selection pressure for protein reading frame preserva-tion. Nucleic Acids Res 32(4): 1261-1269PubMedGoogle Scholar
  77. Roca X, Sachidanandam R et al. (2003) Intrinsic differences between authentic and cryptic 5′ splice sites. Nucleic Acids Res 31(21): 6321-6333PubMedGoogle Scholar
  78. Rogers CS, Vanoye CG et al. (2002) Functional repair of a mutant chloride chan-nel using a trans-splicing ribozyme. J Clin Invest 110(12): 1783-1789PubMedGoogle Scholar
  79. Ryther RC, McGuinness LM et al. (2003) Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet 113(2): 140-148PubMedGoogle Scholar
  80. Sazani P, Gemignani F et al. (2002) Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol 20(12): 1228-1233PubMedGoogle Scholar
  81. Sazani P, Astriab-Fischer A et al. (2003) Effects of base modifications on antisense properties of 2′-O-methoxyethyl and PNA oligonucleotides. Antisense Nucleic Acid Drug Dev 13(3): 119-128PubMedGoogle Scholar
  82. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11(4): 440-445PubMedGoogle Scholar
  83. Shankar P, Manjunath N et al. (2005) The prospect of silencing disease using RNA interference. JAMA 293(11): 1367-1373PubMedGoogle Scholar
  84. Sicinski P, Geng Y et al. (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912): 1578-1580PubMedGoogle Scholar
  85. Sierakowska H, Sambade MJ et al. (1996) Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. Proc Natl Acad Sci USA 93(23): 12840-12844PubMedGoogle Scholar
  86. Simmons DL (2003) Variants of cyclooxygenase-1 and their roles in medicine. Thromb Res 110(5-6): 265-268PubMedGoogle Scholar
  87. Singh NN, Androphy EJ et al. (2004a) An extended inhibitory context causes skip-ping of exon 7 of SMN2 in spinal muscular atrophy. Biochem Biophys Res Commun 315(2): 381-388PubMedGoogle Scholar
  88. Singh NN, Androphy EJ et al. (2004b) In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. Rna 10(8): 1291-1305PubMedGoogle Scholar
  89. Singh NN, Androphy EJ et al. (2004c) The regulation and regulatory activities of alter-native splicing of the SMN gene. Crit Rev Eukaryot Gene Expr 14(4): 271-285PubMedGoogle Scholar
  90. Skordis LA, Dunckley MG et al. (2003) Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci USA 100(7): 4114-4119PubMedGoogle Scholar
  91. Sorek R, Shamir R et al. (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20(2): 68-71PubMedGoogle Scholar
  92. Spillantini MG, Murrell JR et al. (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95 (13): 7737-7741PubMedGoogle Scholar
  93. Stenson PD, Ball EV et al. (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21(6): 577-581PubMedGoogle Scholar
  94. Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA trans-lation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 75: 285-288PubMedGoogle Scholar
  95. Stevenson M (2004) Therapeutic potential of RNA interference. N Engl J Med 351 (17): 1772-1777PubMedGoogle Scholar
  96. Sullenger BA, Cech TR (1994) Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371(6498): 619-622PubMedGoogle Scholar
  97. Sullenger BA, Gilboa E (2002) Emerging clinical applications of RNA. Nature 418(6894): 252-258PubMedGoogle Scholar
  98. Sumner CJ, Huynh TN et al. (2003) Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 54(5): 647-654PubMedGoogle Scholar
  99. Tahara M, Pergolizzi RG et al. (2004) Trans-splicing repair of CD40 ligand deficiency results in naturally regulated correction of a mouse model of hyper-IgM X-linked immunodeficiency. Nat Med 10(8): 835-841PubMedGoogle Scholar
  100. Takeshima Y, Wada H et al. (2001) Oligonucleotides against a splicing enhancer sequence led to dystrophin production in muscle cells from a Duchenne muscu-lar dystrophy patient. Brain Dev 23(8): 788-790PubMedGoogle Scholar
  101. Taylor JK, Zhang QQ et al. (1999) Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 17(11): 1097-1100PubMedGoogle Scholar
  102. Vacek M, Sazani P et al. (2003) Antisense-mediated redirection of mRNA splicing. Cell Mol Life Sci 60(5): 825-833PubMedGoogle Scholar
  103. Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer Res 64(21): 7647-7654PubMedGoogle Scholar
  104. Villemaire J, Dion I et al. (2003) Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J Biol Chem 278(50): 50031-50039PubMedGoogle Scholar
  105. Vitarene Study Group (2002) A randomized controlled clinical trial of intravitre-ous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 133(4): 467-474Google Scholar
  106. Wagner E J, Garcia-Blanco MA (2001) Polypyrimidine tract binding protein antag-onizes exon definition. Mol Cell Biol 21(10): 3281-3288PubMedGoogle Scholar
  107. Wall NR, Shi Y (2003) Small RNA: can RNA interference be exploited for therapy? Lancet 362(9393): 1401-1403PubMedGoogle Scholar
  108. Watanabe T, Sullenger BA (2000) RNA repair: a novel approach to gene therapy. Adv Drug Deliv Rev 44 (2-3): 109-118PubMedGoogle Scholar
  109. Wells KE, Fletcher S et al. (2003) Enhanced in vivo delivery of antisense oligonu-cleotides to restore dystrophin expression in adult mdx mouse muscle. FEBS Lett 552(2-3): 145-149PubMedGoogle Scholar
  110. Wilton SD, Lloyd F et al. (1999) Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord 9(5): 330-338PubMedGoogle Scholar
  111. Yan G, Fukabori Y et al. (1993) Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 13 (8): 4513-4522PubMedGoogle Scholar
  112. Yasumoto H, Matsubara A et al. (2004) Restoration of fibroblast growth factor receptor2 suppresses growth and tumorigenicity of malignant human prostate carcinoma PC-3 cells. Prostate 61(3): 236-242PubMedGoogle Scholar
  113. Zamecnik PC and Stephenson ML (1978) Inhibition of Rous sarcoma virus repli-cation and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75: 280-284PubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2006

Authors and Affiliations

  • Mariano A. Garcia-Blanco
    • 1
  1. 1.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA

Personalised recommendations