Ultrafast X-Ray Scattering in Solids

  • David A. Reis
  • Aaron M. Lindenberg
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 108)

Abstract

X-rays are a valuable probe for studying structural dynamics in solids because of their short wavelength, long penetration depth and relatively strong interaction with core electrons. Recent advances in accelerator- and laser-based pulsed X-ray sources have opened up the possibility of probing nonequilibrium dynamics in real time with atomic-scale spatial resolution. The timescale of interest is a single vibrational period, which can be as fast as a few femtoseconds. To date, almost all such experiments on this timescale have been carried out optically, which only indirectly measure atomic motion through changes in the dielectric function. X-rays have the advantage that they are a direct probe of the atomic positions.

Keywords

78.30.-j; 78.47.+p; 78.70.Ck; 63.22.+m; 78.67.-n 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Chen, I. V. Tomov, P. M. Rentzepis: Time resolved heat propagation in a gold crystal by means of picosecond X-ray diffraction, J. Chem. Phys. 24, 10001–10007 (1996) Google Scholar
  2. V. Srajer, T.-Y. Teng, T. Ursby, C. Pradervand, Z. Ren, S.-I. Adachi, W. Schildkamp, D. Bourgeois, M. Wulff, K. Moffat: Photolysis of the carbon monoxide complex of myoglobin: Nanosecond time-resolved crystallography, Science 274, 1726–1729 (1996) ADSGoogle Scholar
  3. C. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Froster, J.-L. Martin, A. Antonetti: Femtosecond time-resolved X-ray diffraction from laser-heated organic films, Nature 390, 490–492 (1997) ADSGoogle Scholar
  4. S. Techert, F. Schotte, M. Wulff: Picosecond X-ray diffraction probed transient structural changes in organic solids, Phys. Rev. Lett. 86, 2030–2033 (2001) ADSGoogle Scholar
  5. J. S. Wark, N. C. Woolsey, R. R. Whitlock: Novel measurements of high-dynamic crystal strength by picosecond X-ray diffraction, Appl. Phys. Lett. 61, 651–653 (1992) ADSGoogle Scholar
  6. J. S. Wark, R. R. Whitlock, A. A. Hauer, J. E. Swain, P. J. Solone: Subnanosecond X-ray diffraction from laser-shocked crystals, Phys. Rev. B 40, 5705–5714 (1989) ADSGoogle Scholar
  7. A. Loveridge-Smith, A. Allen, J. Belak, T. Boehly, A. Hauer, B. Holian, D. Kalantar, G. Kryala, R. W. Lee, P. Lomdahl, M. A. Meyers, D. Paisley, S. Pollarin, B. Remington, D. C. Swift, S. Weber, J. S. Wark: Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales, Phys. Rev. Lett. 86, 2349–2352 (2001) ADSGoogle Scholar
  8. B. C. Larson, C. W. White, T. S. Noggle, D. Mills: Synchrotron X-ray diffraction study of silicon during pulsed-laser annealing, Phys. Rev. Lett. 48, 337–340 (1982) ADSGoogle Scholar
  9. B. C. Larson, C. W. White, T. S. Noggle, J. F. Barhorst, D. M. Mills: Time-resolved X-ray diffraction measurement of the temperature and temperature gradients in silicon during pulsed laser annealing, Appl. Phys. Lett. 42, 282–284 (1983) ADSGoogle Scholar
  10. A. H. Chin, R. W. Schoenlein, T. E. Glover, P. Balling, W. P. Leemans, C. V. Shank: Ultrafast structural dynamics in InSb probed by time-resolved X-ray diffraction, Phys. Rev. Lett. 83, 336–339 (1999) ADSGoogle Scholar
  11. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty: Detection of nonthermal melting by ultrafast X-ray diffraction, Science 286, 1340–1342 (1999) Google Scholar
  12. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty: Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction, Nature 398, 310–313 (1999) ADSGoogle Scholar
  13. A. Cavalleri, C. W. Siders, F. L. H. Brown, D. M. Leitner, C. Toth, J. A. Squier, C. P. J. Barty, K. R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde, M. Kammler: Anharmonic lattice dynamics in germanium measured with ultrafast X-ray diffraction, Phys. Rev. Lett. 85, 586–589 (2000) ADSGoogle Scholar
  14. A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, R. W. Falcone: Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition, Phys. Rev. Lett. 84, 111–114 (2000) ADSGoogle Scholar
  15. A. Cavalleri, C. W. Siders, C. Rose-Petruck, R. Jimenez, C. Toth, J. Squier, C. P. J. Barty, K. R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde: Ultrafast X-ray measurement of laser heating in semiconductors: Parameters determining the melting threshold, Phys. Rev. B 63, 193306 (2001) ADSGoogle Scholar
  16. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler: Femtosecond X-ray measurement of ultrafast melting and large acoustic transients, Phys. Rev. Lett. 87, 225701 (2001) ADSGoogle Scholar
  17. D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, T. Missalla, J. S. Wark: Probing impulsive strain propagation with X-ray pulses, Phys. Rev. Lett. 86, 3072–3075 (2001) ADSGoogle Scholar
  18. M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, B. Adams, J. M. Caraher, R. Clarke, C. W. S. Conover, E. M. Dufresne, R. Merlin, V. Stoica, J. K. Wahlstrand: Coherent control of pulsed X-ray beams, Nature 413, 825–828 (2001) ADSGoogle Scholar
  19. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Förster, J. P. Geindres, P. Audebert, J. C. Gauthier, D. Hulin: Non-thermal melting in semiconductors measured at femtosecond resolution, Nature 410, 65–68 (2001) ADSGoogle Scholar
  20. A. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K. J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P. Lowney, T. K. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, P. H. Fuoss, C. C. Kao, D. P. Siddons, R. Pahl, J. Als-Nielson, S. Duerster, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, T. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, S. Techert, J. S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, J. B. Hastings: Atomic-scale visualization of inertial dynamics, Science 308, 392–395 (2005) ADSGoogle Scholar
  21. K. J. Gaffney, A. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P. Lowney, T. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, A. T. Macrander, P. H. Fuoss, C. C. Kao, D. P. Siddons, R. Pahl, K. Moffat, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, J. S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, J. B. Hastings: Observation of structural anisotropy and the onset of motion during the nonthermal melting of InSb, Phys. Rev. Lett. 95, 125701–125704 (2005) ADSGoogle Scholar
  22. A. Plech, S. Kürbitz, K. J. Berg, H. Graener, G. Berg, S. Gresillon, M. Kaempfe, J. Feldmann, M. Wulff, G. von Plessen: Time-resolved X-ray diffraction on laser-excited metal nanoparticles, Europhys. Lett. 61, 762–768 (2003) ADSGoogle Scholar
  23. A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, G. von Plessen: Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering, Phys. Rev. B 70, 195423 (2004) ADSGoogle Scholar
  24. M. F. DeCamp, D. A. Reis, A. Cavalieri, P. H. Bucksbaum, R. Clarke, R. Merlin, E. M. Dufresne, D. A. Arms, A. M. Lindenberg, A. G. MacPhee, Z. Chang, B. Lings, J. S. Wark, S. Fahy: Transient strain driven by a dense electron–hole plasma, Phys. Rev. Lett. 91, 165502 (2003) ADSGoogle Scholar
  25. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, J. C. Kieffer: Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition, Phys. Rev. Lett. 87, 237401 (2001) ADSGoogle Scholar
  26. E. Collet, M.-H. Lemee-Cailleau, M. Buron-Le Cointe, H. Cailleau, M. Wulff, T. Luty, S.-Y. Koshihara, M. Meyer, L. Toupet, P. Rabiller, S. Techert: Laser-induced ferroelectric structural order in an organic charge-transfer crystal, Science 300, 612–615 (2003) ADSGoogle Scholar
  27. A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, R. W. Schoenlein: Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption, Phys. Rev. Lett. 95, 067405 (2005) ADSGoogle Scholar
  28. M. Bargheer, N. Zhavoronkov, Y. Gristal, J. C. Woo, D. S. Kim, M. Woerner, T. Elsaesser: Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction, Science 306, 1771–1773 (2004) ADSGoogle Scholar
  29. P. Sondhauss, J. Larsson, M. Harbst, G. A. Naylor, A. Plech, K. Scheidt, O. Synnergren, M. Wulff, J. S. Wark: Picosecond X-ray studies of coherent folded acoustic phonons in a multiple quantum well, Phys. Rev. Lett. 94, 125509 (2005) ADSGoogle Scholar
  30. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kamller, M. Horn von Hoegen, D. von der Linde: Femtosecond X-ray measurement of coherent lattice vibrations near the Lindenmann stability limit, Nature 422, 287–289 (2003) ADSGoogle Scholar
  31. A. Rousse, C. Rischel, J. C. Gauthier: Colloquium: Femtosecond X-ray crystallography, Rev. Mod. Phys. 73, 17–31 (2001) ADSGoogle Scholar
  32. J. S. Wark, A. M. Allen, P. C. Ansbro, P. H. Bucksbaum, Z. Chang, M. DeCamp, R. W. Falcone, P. A. Heimann, S. L. Johnson, I. Kang, H. C. Kapteyn, J. Larsson, R. W. Lee, A. M. Lindenberg, R. Merlin, T. Missalla, G. Naylor, H. A. Padmore, D. A. Reis, K. Scheidt, A. Sjoegren, P. C. Sondhauss, M. Wulff: Femtosecond X-ray diffraction: experiments and limits, in D. M. Mills, H. Schulte-Schrepping, J. R. Arthur (Eds.): X-ray FEL Optics and Instrumentation, SPIE International Symposium on Optical Science and Technology, San Diego, CA, 2000, vol. 4143 (Proceedings of the SPIE 2001) pp. 26–37 Google Scholar
  33. M. F. DeCamp, D. A. Reis, D. M. Fritz, P. H. Bucksbaum, E. M. Dufresne, R. Clarke: X-ray synchrotron studies of ultrafast crystalline dynamics, J. Synch. Radiat. 12, 172–192 (2005) Google Scholar
  34. H. Ihee, M. Lorenc, T. K. Kim, Q. Y. Kong, M. Cammarata, J. H. Lee, S. Bratos, M. Wulff: Ultrafast X-ray diffraction of transient molecular structures in solution, Science 309, 1223–1227 (2005) ADSGoogle Scholar
  35. A. M. Lindenberg, Y. Acremann, D. P. Lowney, P. A. Heimann, T. K. Allison, T. Matthews, R. W. Falcone: Time-resolved measurements of the structure of water at constant density, J. Chem. Phys. 122, 204507 (2005) ADSGoogle Scholar
  36. T. Lee, F. Benesch, Y. Jiang, C. Rose-Petruck: Structure of solvated Fe(Co)(5): XANES and EXAFS measurements using ultrafast laser plasma and conventional X-ray sources, Chem. Phys. 299, 233–245 (2004) Google Scholar
  37. M. Saes, C. Bressler, R. Abela, D. Grolimund, S. L. Johnson, P. A. Heimann, M. Chergui: Observing photochemical transients by ultrafast X-ray absorption spectroscopy, Phys. Rev. Lett. 90, 047403 (2003) ADSGoogle Scholar
  38. A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, P. A. Anfinrud: Visualizing chemical reactions in solution by picosecond X-ray diffraction, Phys. Rev. Lett. 92, 125505 (2004) ADSGoogle Scholar
  39. L. X. Chen, W. J. H. Jager, G. Jennings, D. J. Gosztola, A. Munkholm, J. Hessler: Capturing a photoexcited molecular structure through time-domain X-ray absorption fine structure, Science 292, 262–264 (2001) ADSGoogle Scholar
  40. S. L. Johnson, P. A. Heimann, A. G. MacPhee, O. R. Monteiro, Z. Chang, R. W. Lee, R. W. Falcone: Bonding in liquid carbon studied by time-resolved X-ray absorption spectroscopy, Phys. Rev. Lett. 94, 057407 (2005) ADSGoogle Scholar
  41. S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, R. W. Falcone: Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy, Phys. Rev. Lett. 91, 157403 (2003) ADSGoogle Scholar
  42. M. M. Murnane, H. C. Kapteyn, M. D. Rosen, R. W. Falcone: Ultrafast X-ray pulses from laser-produced plasmas, Science 251, 531–536 (1991) ADSGoogle Scholar
  43. A. Rousse, P. Audebert, J. P. Geindre, F. Fallies, J. C. Gauthier, A. Mysyrowicz, G. Grillon, A. Antonetti: Efficient KαX-ray source from femtosecond laser-produced plasmas, Phys. Rev. E 50, 2200–2207 (1994) ADSGoogle Scholar
  44. J. C. Kieffer, M. Chaker, J. P. Matte, H. Pepin, C. Y. Cote, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, O. Peyrusse: Ultrafast X-ray sources, Phys. Fluids B 5, 2676–2681 (1993) ADSGoogle Scholar
  45. C. Reich, P. Gibbon, I. Uschmann, E. Forster: Yield optimization and time structure of femtosecond laser plasma K-alpha sources, Phys. Rev. Lett. 84, 4846–4849 (2000) ADSGoogle Scholar
  46. K. Sokolowski-Tinten, D. von der Linde: Ultrafast phase transitions and lattice dynamics probed using laser-produced X-ray pulses, J. Phys. Condens. Matter 16, R1517–R1536 (2004) ADSGoogle Scholar
  47. A. Rousse, C. Rischel, J. Gauthier: Femtosecond X-ray crystallography, Rev. Mod. Phys. 73, 17–31 (2001) ADSGoogle Scholar
  48. H. Wiedemann: Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics (Springer, Berlin, Heidelberg 1999) Google Scholar
  49. H. Wiedemann: Particle Accelerator Physics II: Nonlinear and Higher-Order Beam Dynamics (Springer, Berlin, Heidelberg 1999) Google Scholar
  50. W. Barletta, H. Winick: Introduction to special section on future light sources, Nucl. Instrum. Meth. A 500, 1–10 (2003) ADSGoogle Scholar
  51. J. Corbett, T. Rabedeau: Intermediate-energy light sources, Nucl. Instrum. Meth. A 500, 11–17 (2003) ADSGoogle Scholar
  52. C. Pellegrini, J. Stohr: X-ray free-electron lasers – principles, properties and applications, Nucl. Instrum. Methods A 500, 33–40 (2003) ADSGoogle Scholar
  53. D. Attwood: Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, Cambridge 1999) Google Scholar
  54. J. Als-Nielsen, D. McMorrow: Elements of Modern X-Ray Physics (John Wiley and Sons, Ltd., New York 2001) Google Scholar
  55. A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, R. W. Falcone: Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition, Phys. Rev. Lett. 84, 111–114 (2000) ADSGoogle Scholar
  56. Z. Chang, A. Rundquist, J. Zhou, M. M. Murnane, H. C. Kapteyn, X. Liu, B. Shan, J. Liu, L. Niu, M. Gong, X. Zhang: Demonstration of a sub-picosecond X-ray streak camera, Appl. Phys. Lett. 69, 133–135 (1996) ADSGoogle Scholar
  57. M. M. Shakya, Z. Chang: Achieving 280 fs resolution with a streak camera by reducing the deflection dispersion, Appl. Phys. Lett. 87, 041103 (2005) ADSGoogle Scholar
  58. J. Larsson, Z. Chang, E. Judd, P. J. Schuck, R. W. Falcone, P. A. Heimann, H. A. Padmore, H. C. Kapteyn, P. H. Bucksbaum, M. M. Murnane, R. W. Lee, A. Machacek, J. S. Wark, X. Liu, B. Shan: Ultrafast X-ray diffraction using a streak-camera detector in averaging mode, Opt. Lett. 22, 1012–1014 (1997) ADSGoogle Scholar
  59. D. P. Lowney, P. A. Heimann, H. A. Padmore, E. M. Gullikson, A. G. MacPhee, R. W. Falcone: Characterization of cSi photocathodes at grazing incidence for use in a unit quantum efficiency X-ray streak camera, Rev. Sci. Instrum. 75, 3131 (2005) ADSGoogle Scholar
  60. R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, M. S. Zolotorev: Generation of femtosecond pulses of synchrotron radiation, Science 287, 2237–2240 (2000) ADSGoogle Scholar
  61. A. Cavalleri, R. Schoenlein: Femtosecond X-rays and structural dynamics in condensed matter, in K.-T. Tsen (Ed.): Ultrafast Dynamical Processes in Semiconductors, vol. 92, Topics in Applied Physics (Springer, Berlin, Heidelberg 2004) pp. 309–338 Google Scholar
  62. A. A. Zholents, M. S. Zolotorev: Femtosecond X-ray pulses of synchrotron radiation, Phys. Rev. Lett. 76, 912–915 (1996) ADSGoogle Scholar
  63. P. H. Bucksbaum, R. Merlin: The phonon Bragg switch: A proposal to generate sub-picosecond X-ray pulses, Solid State Commun. 111, 535–539 (1999) ADSGoogle Scholar
  64. R. F. Service: Battle to become the next-generation X-ray source, Science 298, 1356–1358 (2002) Google Scholar
  65. J. A. J. Feldhaus, J. B. Hastings: X-ray free electron lasers, J. Phys. B: At. Mol. Opt. Phys. 38, S799–S819 (2004) Google Scholar
  66. M. Cornacchia, J. Arthur, K. Bane, P. Bolton, R. Carr, F. J. Decker, P. Emma, J. Galayda, J. Hastings, K. Hodgson, Z. Huang, I. Lindau, H. D. Nuhn, J. Paterson, C. Pellegrini, S. Reiche, H. Schlarb, J. Stohr, G. Stupakov, D. Walz, H. Winick: Future possibilities of the linac coherent light source, J. Synch. Radiat. 11, 227–238 (2004) Google Scholar
  67. H. C. Kapteyn, T. Ditmire: Ultraviolet upset, Nature 420, 467–468 (2002) ADSGoogle Scholar
  68. H. Wabnitz, L. Bittner, A. R. B. de Castro, R. Dohrmann, P. Gurtler, T. Laarmann, W. Laasch, J. Schulz, A. Swiderski, K. von Haeften, T. Moller, B. Faatz, A. Fateev, J. Feldhaus, C. Gerth, U. Hahn, E. Saldin, E. Schneidmiller, K. Sytchev, K. Tiedtke, R. Treusch, M. Yurkov: Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser, Nature 420, 482–485 (2002) ADSGoogle Scholar
  69. P. Emma, R. Iverson, P. Krejcik, J. Raimondi, J. Safranek: Femtosecond electron bunch lengths in the SLAC FFTB beamline, Proceedings of the 2001 Particle Accelerator Conference (PAC2001) pp. 4038–4040 (2001) Google Scholar
  70. P. Krejcik, F.-J. Decker, P. Emma, K. Hacker, L. Hendrickson, C. L. O'Connel, H. Schlarb, H. Smith, M. Stanek: Commissioning of the SPPS linac bunch compressor, Proceedings of the 2003 Particle Accelerator Conference (PAC2003) pp. 423–425 (2003) Google Scholar
  71. A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstein, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dürsterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, T. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Emma, P. Krejcik, J. Arthur, S. Brennan, K. J. Gaffney, A. M. Lindenberg, K. Luening, J. B. Hastings: Clocking femtosecond X-rays, Phys. Rev. Lett. 94, 114801 (2005) ADSGoogle Scholar
  72. B. Warren: X-Ray Diffraction (Addison Wesley Pub. Co., Reading, MA 1969) Google Scholar
  73. B. W. Batterman, H. Cole: Dynamical diffraction of X rays by perfect crystals, Rev. Mod. Phys. 36, 681–716 (1964) ADSMathSciNetGoogle Scholar
  74. J. Larsson, A. Allen, P. H. Bucksbaum, R. W. Falcone, A. Lindenberg, G. Naylor, T. Missalla, D. A. Reis, K. Scheidt, A. Sjögren, P. Sondhauss, M. Wulff, J. S. Wark: Picosecond X-ray diffraction studies of laser-excited acoustic phonons in InSb, Appl. Phys. A. 75, 467–478 (2002) ADSGoogle Scholar
  75. R. Merlin: Generating coherent THz phonons with light pulses, Solid State Commun. 102, 207–220 (1997) ADSGoogle Scholar
  76. W. H. Zachariasen: Theory of X-Ray Diffraction in Crystals (John Wiley and Sons, Inc., New York 1945) Google Scholar
  77. S. Takagi: Dynamical theory of diffraction applicable to crystals with any kind of small distortion, Acta Cryst. 15, 1311 (1962) Google Scholar
  78. D. Taupin: Théorie dynamique de la diffraction des rayons X par les cristaux déformé, Bull. Soc. Franç. Minér. Crist. 87, 469–511 (1964) Google Scholar
  79. C. R. Wie, T. A. Tombrello, T. Vreeland, Jr.: Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis, J. Appl. Phys. 59, 3743–3746 (1985) ADSGoogle Scholar
  80. J. S. Wark, H. He: Subpicosecond X-ray-diffraction, Laser and Particle Beams 12, 507–513 (1994) ADSGoogle Scholar
  81. F. N. Chukhovskii, E. Förster: Time-dependent X-ray Bragg-diffraction, Acta Cryst. A 51, 668–672 (1995) Google Scholar
  82. P. Sondhauss, J. S. Wark: Extension of the time-dependent dynamical diffraction theory to `optical phonon'-type distortions: Application to diffraction from coherent acoustic and optical phonons, Acta. Cryst. A59, 7–13 (2002) Google Scholar
  83. B. W. Adams: Time-dependent Takagi–Taupin eikonal theory of X-ray diffraction in rapidly changing crystal structures, Acta Cryst. A 60, 120–133 (2004) Google Scholar
  84. S. D. LeRoux, R. Colella, R. Bray: X-ray-diffraction studies of acoustoelectrically amplified phonon beams, Phys. Rev. Lett. 35, 230–234 (1975) ADSGoogle Scholar
  85. L. D. Chapman, R. Colella, R. Bray: X-ray-diffraction studies of acoustoelectrically amplified phonons, Phys. Rev. B 27, 2264–2277 (1983) ADSGoogle Scholar
  86. E. J. Yoffa: Dynamics of dense laser-induced plasmas, Phys. Rev. B 21, 2415–2425 (1980) ADSGoogle Scholar
  87. J. F. Young, H. M. van Driel: Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects, Phys. Rev. B 26, 2147–2158 (1982) ADSGoogle Scholar
  88. C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, J. J. Hauser: Coherent phonon generation and detection by picosecond light pulses, Phys. Rev. Lett. 53, 989–992 (1984) ADSGoogle Scholar
  89. C. Thomsen, H. T. Grahn, H. J. Maris, J. Tauc: Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B 34, 4129–4138 (1986) ADSGoogle Scholar
  90. G. Tas, H. J. Maris: Picosecond ultrasonic study of phonon reflection from solid–liquid interfaces, Phys. Rev. B 55, 1852–1857 (1997) ADSGoogle Scholar
  91. R. J. Stoner, H. J. Maris: Kapitza conductance and heat flow between solids at temperatures from 50 to 300, Phys. Rev. B 48, 16373–16387 (1993) ADSGoogle Scholar
  92. H. Y. Hao, H. J. Maris, D. K. Sadana: Nondestructive evaluation of interfaces in bonded silicon-on-insulator structures using picosecond ultrasonics technique, Electrochem. Solid-State Lett. 1, 54–55 (1998) Google Scholar
  93. H. Y. Hao, H. J. Maris: Study of phonon dispersion in silicon and germanium at long wavelengths using picosecond ultrasonics, Phys. Rev. Lett. 84, 5556–5559 (2000) ADSGoogle Scholar
  94. H. Y. Hao, H. J. Maris: Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire, Phys. Rev. B 63, 224301 (2001) ADSGoogle Scholar
  95. H. Y. Hao, H. J. Maris: Experiments with acoustic solitons in crystalline solids, Phys. Rev. B 64, 064302 (2001) ADSGoogle Scholar
  96. B. C. Daly, H. J. Maris, W. K. Ford, G. A. Antonelli, L. Wong, E. Andideh: Optical pump and probe measurement of thermal conductivity of low-k dielectric thin films, J. Appl. Phys. 92, 6005–6009 (2002) ADSGoogle Scholar
  97. R. M. Costescu, M. A. Wall, D. G. Cahill: Thermal conductance of epitaxial interfaces, Phys. Rev. B 67, 054302 (2003) ADSGoogle Scholar
  98. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, S. R. Phillpot: Nanoscale thermal transport, J. Appl. Phys. 93, 793–818 (2003) ADSGoogle Scholar
  99. P. Y. Yu, M. Cardona: Fundamentals of Semiconductors: Physics and Materials Properties, 3 ed. (Springer, Berlin, Heidelberg 2004) Google Scholar
  100. K. D. Liss, A. Magerl, R. Hock, A. Remhof, B. Waibel: Towards a new (Q,t) regime by time-resolved X-ray diffraction: Ultra-sound excited crystals as an example, Europhys. Lett. 40, 369–374 (1997) ADSGoogle Scholar
  101. J. C. Slater: Interaction of waves in crystals, Rev. Mod. Phys. 30, 197–222 (1958) ADSMathSciNetMATHGoogle Scholar
  102. G. Borrmann, G. Hildebrandt: Röntgen-Wellenfelder in grossen Kalkspatkristallen und die Wirkung einer Deformation, Z. Naturforsch. A 11, 585–587 (1956) ADSGoogle Scholar
  103. A. Hauer, S. J. Burns: Observation of an X-ray shuttering mechanism utilizing acoustic interruption of the Borrmann effect, Appl. Phys. Lett. 27, 524–526 (1975) ADSGoogle Scholar
  104. I. R. Entin, E. V. Suvorov, N. P. Kobelev, Y. M. Soifer: X-ray acoustic resonance in a perfect silicon crystal, Fizikia Tverdogo Tela 20, 1311–1315 (1978) Google Scholar
  105. S. D. LeRoux, R. Colella, R. Bray: Effect of acoustoelectric phonons on anomalous transmission of X-rays, Phys. Rev. Lett. 37, 1056–1059 (1976) ADSGoogle Scholar
  106. A. Authier, S. Lagomarsino, B. K. Tanner (Eds.): X-ray and Neutron Dynamical Diffraction: Theory and Applications, NATO ASI Series (Plenum, New York 1996) Google Scholar
  107. H. Klapper, I. L. Smolsky: Borrmann-effect topography of thich potassium dihydrogen phosphate (kdp) crystals, Cryst. Res. Technol. 33, 605–611 (1998) Google Scholar
  108. C. V. Shank, D. H. Auston: Picosecond ellipsometry of transient electron–hole plamsas in germanium, Phys. Rev. Lett. 32, 1120–1123 (1974) ADSGoogle Scholar
  109. C. V. Shank, R. Yen, C. Hirlimann: Femtosecond-time-resolved surface structural dynamics of optically excited silicon, Phys. Rev. Lett. 51, 900–903 (1983) ADSGoogle Scholar
  110. H. W. K. Tom, G. D. Aumiller, C. H. Brito-Cruz: Time-resolved study of laser-induced disorder of Si surfaces, Phys. Rev. Lett. 60, 1438–1441 (1988) ADSGoogle Scholar
  111. K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde: Ultrafast laser-induced order-disorder transitions in semiconductors, Phys. Rev. B 51, 14186–14198 (1995) ADSGoogle Scholar
  112. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, D. von der Linde: Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation, Phys. Rev. B 58, R11805–R11808 (1998) ADSGoogle Scholar
  113. K. Solokolowski-Tinten, A. Cavalleri, D. von der Linde: Single-pulse time- and fluence-resolved optical measurements at femtosecond excited surfaces, Appl. Phys. A 69, 577–579 (1999) ADSGoogle Scholar
  114. K. Sokolowski-Tinten, D. von der Linde: Generation of dense electron–hole plasmas in silicon, Phys. Rev. B 61, 2643–2650 (2000) ADSGoogle Scholar
  115. N. V. Chigarev, D. Yu, Y. Paraschuk, X. Y. Pan, V. E. Gusev: Coherent phonon emission in the supersonic expansion of photoexcited electron–hole plasma in Ge, Phys. Rev. B 61, 15837–15840 (2000) ADSGoogle Scholar
  116. O. B. Wright, B. Perrin, O. Matsuda, V. E. Gusev: Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses, Phys. Rev. B 64, 081202 (2001) ADSGoogle Scholar
  117. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, T. Elsaesser: Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction, Science 306, 1771–1773 (2004) ADSGoogle Scholar
  118. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, D. A. Reis: Generation and propagation of a picosecond acoustic pulse at a buried interface: Time-resolved X-ray diffraction measurements, Phys. Rev. Lett. 95, 246104 (2005) ADSGoogle Scholar
  119. E. T. Swartz, R. O. Pohl: Thermal boundary resistance, Rev. Mod. Phys. 61, 605–668 (1989) ADSGoogle Scholar
  120. J. P. Wolfe: Imaging Phonons: Acoustic Wave Propagation in Solids (Cambridge University Press, Cambridge 1998) Google Scholar
  121. V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, W. Wiegmann: Selective transmission of high-frequency phonons by a superlattice: The ``dielectric'' phonon filter, Phys. Rev. Lett. 43, 2012–2016 (1979) ADSGoogle Scholar
  122. D. B. McWhan, P. Hu, M. A. Chin, V. Narayanamurti: Observation of optically excited near-zone-edge phonons in GaAs by diffuse X-ray scattering, Phys. Rev. B 26, 4774–4776 (1982) ADSGoogle Scholar
  123. J. F. Scott: Soft-mode spectroscopy: Experimental studies of structural phase transitions, Rev. Mod. Phys. 46, 83–128 (1974) ADSGoogle Scholar
  124. A. Nazarkin, I. Uschmann, E. Förster, R. Sauerbrey: High-order Raman scattering of X-rays by optical phonons and generation of ultrafast X-ray transients, Phys. Rev. Lett. 93, 207401 (2004) ADSGoogle Scholar
  125. T. K. Cheng, S. D. Brorson, A. S. Kazeroonian, J. S. Moodera, G. Dresselhaus, M. S. Dresselhaus, E. P. Ippen: Impulsive excitation of coherent phonons observed in reflection in bismuth and antimony, Appl. Phys. Lett. 57, 1004 (1990) ADSGoogle Scholar
  126. T. K. Cheng, J. Vidal, H. J. Zeiger, G. Dresselhaus, M. S. Dresselhaus, E. P. Ippen: Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te and Ti2O3, Appl. Phys. Lett. 59, 1923 (1991) ADSGoogle Scholar
  127. M. Hase, K. Mizoguchi, H. Harima, S. Nakashima, M. Tani, K. Sakai, M. Hangyo: Optical control of coherent optical phonons in bismuth films, Appl. Phys. Lett. 69, 2474–2476 (1996) ADSGoogle Scholar
  128. M. Hase, K. Mizoguchi, H. Harima, S. Nakashima, K. Sakai: Dynamics of coherent phonons in bismuth generated by ultrashort laser pulses, Phys. Rev. B 58, 5448 (1998) ADSGoogle Scholar
  129. M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, R. Merlin: Dynamics and coherent control of high-amplitude optical phonons in bismuth, Phys. Rev. B 64, 92301 (2001) ADSGoogle Scholar
  130. M. Hase, M. Kitajima, S. Nakashima, K. Mizoguchi: Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation, Phys. Rev. Lett. 88, 67401 (2002) ADSGoogle Scholar
  131. O. V. Misochko, M. Hase, K. Ishioka, M. Kitajima: Observation of an amplitude collapse and revival of chirped coherent phonons in bismuth, Phys. Rev. Lett. 92, 197401 (2004) ADSGoogle Scholar
  132. O. V. Misochko, M. Hase, K. Ishioka, M. Kitajima: Transient Bose–Einstein condensation of phonons, Phys. Lett. A 321, 381–387 (2004) ADSMATHGoogle Scholar
  133. E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, D. A. Reis: Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth, Phys. Rev. B 72, 060301 (2005) ADSGoogle Scholar
  134. S. Fahy, D. A. Reis: Coherent phonons: Electronic softening or anharmonicity?, Phys. Rev. Lett. 93, 109701 (2004) ADSGoogle Scholar
  135. M. Hase, M. Kitajima, S. Nakashima, K. Mizoguchi: Coherent phonons: Electronic softening or anharmonicity? Hase et al. reply, Phys. Rev. Lett. 93, 109702 (2004) ADSGoogle Scholar
  136. X. Gonze, J.-P. Michenaud, J.-P. Vigneron: First-principles study of As, Sb, and Bi electronic properties, Phys. Rev. B 41, 11827 (1990) ADSGoogle Scholar
  137. H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, M. S. Dresselhaus: Theory for displacive excitation of coherent phonons, Phys. Rev. B 45, 768 (1992) ADSGoogle Scholar
  138. T. E. Stevens, J. Kuhl, R. Merlin: Coherent phonon generation and the two stimulated Raman tensors, Phys. Rev. B 65, 144304 (2002) ADSGoogle Scholar
  139. C. V. Shank, R. Yen, C. Hirlimann: Femtosecond-time-resolved surface structural dynamics of optically excited silicon, Phys. Rev. Lett. 51, 900–902 (1983) ADSGoogle Scholar
  140. I. L. Shumay, U. Hofer: Phase transformation of an InSb surface induced by strong femtosecond laser pulses, Phys. Rev. B 53, 15878–15884 (1996) ADSGoogle Scholar
  141. S. K. Sundaram, E. Mazur: Inducing and probing non-thermal transitions in semiconductors, Nature Mater. 1, 217–224 (2002) ADSGoogle Scholar
  142. X. Lui, D. Du, G. Mourou: Laser ablation and micromachining with ultrashort laser pulses, IEEE J. Quantum Electron. 33, 1706 (1997) ADSGoogle Scholar
  143. F. Rossi, T. Kuhn: Theory of ultrafast phenomena in photoexcited semiconductors, Rev. Mod. Phys. 74, 895 (2002) ADSGoogle Scholar
  144. J. A. V. Vechten, R. Tsu: Nonthermal pulsed laser annealing of Si; plasma annealing, Phys. Lett. A 74, 422–426 (1979) ADSGoogle Scholar
  145. P. Stampfli, K. H. Bennemann: Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: Role of longitudinal optical distortions, Phys. Rev. B 49, 7299–7305 (1994) ADSGoogle Scholar
  146. P. Stampfli, K. H. Bennemann: Dynamical theory of the laser-induced lattice instability of silicon, Phys. Rev. B 46, 10686–10692 (1992) ADSGoogle Scholar
  147. P. Stampfli, K. H. Bennemann: Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron–hole plasma, Phys. Rev. B 42, 7163–7173 (1990) ADSGoogle Scholar
  148. J. S. Graves, R. E. Allen: Response of GaAs to fast intense laser pulses, Phys. Rev. B 58, 13627 (1998) ADSGoogle Scholar
  149. P. L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel: Ab initio molecular dynamics simulations of laser melting of silicon, Phys. Rev. Lett. 77, 3149–3152 (1996) ADSGoogle Scholar
  150. T. Dumitrica, A. Burzo, Y. Dou, R. E. Allen: Response of Si and InSb to ultrafast laser pulses, Phys. Stat. Sol. (b) 241, 2331–2342 (2004) ADSGoogle Scholar
  151. D. von der Linde, J. Kuhl, H. Klingenberg: Raman scattering from nonequilibrium LO phonons with picosecond resolution, Phys. Rev. Lett. 44, 1505 (1980) ADSGoogle Scholar
  152. S. S. Prabhu, A. S. Vengurlekar, S. K. Roy, J. Shah: Nonequilibrium dynamics of hot carriers and hot phonons in CdSe and GaAs, Phys. Rev. B 51, 14233–14246 (1995) ADSGoogle Scholar
  153. J. A. Kash, J. C. Tsang, J. M. Hvam: Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs, Phys. Rev. Lett. 54, 2151 (1985) ADSGoogle Scholar
  154. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, E. Mazur: Ultrafast electronic disordering during femtosecond laser melting of GaAs, Phys. Rev. Lett. 67, 1023–1026 (1991) ADSGoogle Scholar
  155. L. Huang, J. P. Callan, E. N. Glezer, E. Mazur: GaAs under intense ultrafast excitation: Response of the dielectric function, Phys. Rev. Lett. 80, 185–188 (1998) ADSGoogle Scholar
  156. J. P. Callan, A. M.-T. Kim, C. A. D. Roeser, E. Mazur: Universal dynamics during and after ultrafast laser-induced semicondctor-to-metal transitions, Phys. Rev. B 64, 073201 (2001) ADSGoogle Scholar
  157. K. Sokolowski-Tinten, D. von der Linde: Ultrafast phase transitions and lattice dynamics probed using laser-produced X-ray pulses, J. Phys. Condens. Matter 16, R1517–R1536 (2004) ADSGoogle Scholar
  158. J. Larsson, P. A. Heimann, A. M. Lindenberg, P. J. Schuck, P. H. Bucksbaum, R. W. Lee, H. A. Padmore, J. S. Wark, R. W. Falcone: Ultrafast structural changes measured by time-resolved X-ray diffraction, Appl. Phys. A 66, 587–591 (1998) ADSGoogle Scholar
  159. O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, R. Wouts: Projecting picosecond lattice dynamics through X-ray topography, Appl. Phys. Lett. 80, 3727–3730 (2002) ADSGoogle Scholar
  160. R. Neutze, J. Hajdu: Femtosecond time resolution in X-ray diffraction experiments, Proceedings of the National Academy of Science 94, 5651–5655 (1997) ADSGoogle Scholar
  161. P. C. Liu, P. R. Okamoto, N. J. Zaluzec, M. Meshii: Boron-implantation-induced crystalline-to-amorphous transition in nickel: An experimental assessment of the generalized Lindemann melting criterion, Phys. Rev. B 60, 800–814 (1999) ADSGoogle Scholar
  162. E. E. Castellana, P. Main: On the classical interpretation of thermal probability ellipsoids and the Debye–Waller factor, Acta Cryst. A 41, 156–157 (1985) Google Scholar
  163. D. A. Arms, R. S. Shah, R. O. Simmons: X-ray Debye–Waller factor measurements of solid ^3He and ^4He, Phys. Rev. B 67, 094303 (2003) ADSGoogle Scholar
  164. E. W. Draeger, D. M. Ceperley: Debye–Waller factor in solid ^3He and ^4He, Phys. Rev. B 61, 12094 (2000) ADSGoogle Scholar
  165. W. F. Kuhs: Generalized atomic displacements in crystallographic structure analysis, Acta Cryst. A 48, 80–98 (1992) Google Scholar
  166. G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, W. D. Phillips: Bragg scattering from atoms in optical lattices, Phys. Rev. Lett. 75, 2823–2826 (1995) ADSGoogle Scholar
  167. J. W. Gadzuk: Breathing mode excitation in near-harmonic systems: Resonant mass capture, desorption and atoms in optical lattices, J. Phys. B: At. Mol. Opt. Phys. 31, 4061–4084 (1998) ADSGoogle Scholar
  168. G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, Cambridge 1978) Google Scholar
  169. G. Raithel, G. Birkl, W. D. Phillips, S. L. Rolston: Compression and parametric driving of atoms in optical lattices, Phys. Rev. Lett. 78, 2928–2931 (1997) ADSGoogle Scholar
  170. M. Leibscher, I. S. Averbukh: Squeezing of atoms in a pulsed optical lattice, Phys. Rev. A 65, 053816 (2002) ADSGoogle Scholar
  171. B. A. Dasannacharya, K. R. Rao: Neutron scattering from liquid argon, Phys. Rev. 137, A417–427 (1965) ADSGoogle Scholar
  172. A. Paskin, A. Rahman: Effects of a long-range oscillatory potential on the radial distribution function and the constant of self-diffusion in liquid Na, Phys. Rev. Lett. 16, 300–303 (1966) ADSGoogle Scholar
  173. K. Skold, J. M. Rowe, G. Ostrowski, P. D. Randolph: Coherent and incoherent scattering laws of liquid argon, Phys. Rev. A 6, 1107–1131 (1972) ADSGoogle Scholar
  174. G. H. Vineyard: Scattering of slow neutrons by a liquid, Phys. Rev. 110, 999–1010 (1958) ADSGoogle Scholar
  175. U. Balucani, M. Zoppi: Dynamics of the Liquid State (Clarendon Press, Oxford 1994) Google Scholar
  176. F. A. Lindemann: "Uber die Berechnung molekularer Eigenfrequenzen, Phys. Z. 11, 609–612 (1910) Google Scholar
  177. C. W. Siders, A. Cavalleri: Creating transient crystal structures with light, Science 300, 591–592 (2003) Google Scholar
  178. A. Zholentz, P. Heimann, M. Zolotorev, J. Byrd: Generation of subpicosecond X-ray pulses using rf orbit deflection, NIM A 425, 385–389 (1999) ADSGoogle Scholar
  179. M. Borland: Simulation and analysis of using deflecting cavities to produce short X-ray pulses with the advanced photon source, Phys. Rev. S.T. 8, 074001 (2005) ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  • David A. Reis
    • 1
  • Aaron M. Lindenberg
    • 2
  1. 1.FOCUS Center and Department of PhysicsUniversity of MichiganAnn ArborUSA
  2. 2.Stanford Synchrotron Radiation Laboratory/Stanford Linear Accelerator Center (SLAC)Menlo ParkUSA

Personalised recommendations