Advertisement

Raman Scattering in Carbon Nanotubes

  • Christian Thomsen
  • Stephanie Reich
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 108)

Abstract

The vibrational properties of single-walled carbon nanotubes reflect the electron and phonon confinement as well as the cylindrical geometry of the tubes. Raman scattering is one of the prime techniques for studying the fundamental properties of carbon tubes and nanotube characterization. The most important phonon for sample characterization is the radial-breathing mode, an in-phase radial movement of all carbon atoms. In combination with resonant excitation it can be used to determine the nanotube microscopic structure.

Metallic and semiconducting tubes can be distinguished from the high-energy Raman spectra. The high-energy phonons are remarkable because of their strong electron–phonon coupling, which leads to phonon anomalies in metallic tubes. A common characteristic of the Raman spectra in nanotubes and graphite is the appearance of Raman peaks that correspond to phonons from inside the Brillouin zone, the defect-induced modes. In this Chapter we first introduce the vibrational, electronic, and optical properties of carbon tubes and explain important concepts such as the nanotubes’ family behavior. We then discuss the Raman-active phonons of carbon tubes. Besides the vibrational frequencies and symmetries Raman spectroscopy also allows optical (excitonic) transitions, electron–phonon coupling and phase transitions in single-walled carbon nanotubes to be studied.

Keywords

78.30.-j; 78.47.+p; 78.70.Ck; 63.22.+m; 78.67.-n 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56 (1991) ADSGoogle Scholar
  2. S. Iijima, T. Ichihasi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603 (1993) ADSGoogle Scholar
  3. J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, P. Ordej'on: Phys. Rev. Lett. 92, 075501 (2004) ADSGoogle Scholar
  4. C. Thomsen, S. Reich: Double-resonant Raman scattering in graphite, Phys. Rev. Lett. 85, 5214 (2000) ADSGoogle Scholar
  5. P. R. Wallace: The band theory of graphite, Phys. Rev. 71, 622 (1947) ADSzbMATHGoogle Scholar
  6. S. Reich, J. Maultzsch, C. Thomsen, P. Ordej' on: Tight-binding description of graphene, Phys. Rev. B 66, 035412 (2002) ADSGoogle Scholar
  7. V. N. Popov: New. J. Phys. 6, 17 (2004) ADSGoogle Scholar
  8. D. S'anchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordej'on: initio structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B 59, 12678 (1999) ADSGoogle Scholar
  9. S. Reich, C. Thomsen, P. Ordej' on: Electronic band structure of isolated and bundled nanotubes, Phys. Rev. B 65, 155411 (2002) ADSGoogle Scholar
  10. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Phys. Rev. Lett. 92, 077402 (2004) ADSGoogle Scholar
  11. V. Perebeinos, J. Tersoff, P. Avouris: Phys. Rev. Lett. 94, 027402 (2005) ADSGoogle Scholar
  12. F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005) ADSGoogle Scholar
  13. J. Maultzsch, C. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. Strano, C. Thomsen, C. Lienau: Exciton binding energies from two-photon photoluminescence in single-walled carbon nanotubes, Phys. Rev. B 72, 241402 (2005) ADSGoogle Scholar
  14. Q. Zhao, H. D. Wagner: Raman spectroscopy of carbon-nanotube-based composites, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbon: from Nanotubes to Diamond, vol. 362, Philosophical Transactions of the Royal Society A (The Royal Society, London 2004) p. 2407 Google Scholar
  15. R. Krupke, F. Hennrich, H. v. Löhneysen, M. M. Kappes: Science 301, 344 (2003) ADSGoogle Scholar
  16. S. Reich, L. Li, J. Robertson: Control the chirality of carbon nanotubes by epitaxial growth, Chem. Phys. Lett. 421, 469–472 (2006) ADSGoogle Scholar
  17. N. N. Ilichev: SWNTs as a passive Q-switches for self mode-locking of solid state lasers, in H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.): Electronic Properties of Novel Materials, AIP Conference Proceedings (AIP, College Park 2005) Google Scholar
  18. A. B. Dalton, S. Collins, E. Mu~noz, J. M. Razal., V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman: Super-tough carbon-nanotube fibres – these extraordinary composite fibres can be woven into electronic textiles, Nature 423, 703 (2003) ADSGoogle Scholar
  19. R. H. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284, 1340 (1999) ADSGoogle Scholar
  20. S. Reich, C. Thomsen, J. Maultzsch: Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Berlin 2004) Google Scholar
  21. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995) Google Scholar
  22. M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, Topics in Applied Physics (Springer, Berlin, Heidelberg 2001) Google Scholar
  23. R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998) Google Scholar
  24. P. J. F. Harris: Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge 1999) Google Scholar
  25. T. Ando: Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74, 777 (2005) ADSzbMATHGoogle Scholar
  26. M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio: Raman spectroscopy of carbon nanotubes, Phys. Rep. 409, 47 (2005) ADSGoogle Scholar
  27. R. P. Raffaelle, B. J. Landi, J. D. Harris, S. G. Bailey, A. F. Hepp: Carbon nanotubes for power applications, Mater. Sci. Eng. B 116, 233 (2005) Google Scholar
  28. J. Wang: Carbon-nanotube based electrochemical biosensors: A review, Electroanal. 17, 7 (2005) Google Scholar
  29. U. D. Venkateswaran: Squeezing carbon nanotubes, phys. stat. sol. B 241, 3345 (2004) ADSGoogle Scholar
  30. C. Thomsen, H. Kataura (Eds.): Focus on Carbon Nanotubes, vol. 5, The New Journal of Physics (Institute of Physics and Deutsche Physikalische Gesellschaft, London 2003) Google Scholar
  31. A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbon: from Nanotubes to Diamond, vol. 362, Philosophical Transactions of the Royal Society A (The Royal Society, London 2004) Google Scholar
  32. Y. Baskin, L. Meyer: Lattice constant of graphite at low temperatures, Phys. Rev. B 100, 544 (1955) ADSGoogle Scholar
  33. Y. X. Zhao, I. L. Spain: X-ray diffraction data for graphite to 20,GPa, Phys. Rev. B 40, 993 (1989) ADSGoogle Scholar
  34. M. Hanfland, H. Beister, K. Syassen: Graphite under pressure: Equation of state and first-order Raman modes, Phys. Rev. B 39, 12 598 (1989) Google Scholar
  35. J. C. Boettger: All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite, Phys. Rev. B 55, 11202 (1997) ADSGoogle Scholar
  36. J. Kürti, V. Z'olyomi, M. Kertesz, G. Sun: New J. Phys. 5, 125 (2003) Google Scholar
  37. A. Burian, J. Koloczek, J. Dore, A. Hannon, J. Nagy, A. Fonseca: Radial distribution function analysis of spatial atomic correlations in carbon nanotubes, Diam. Relat. Mater. 13, 1261 (2004) Google Scholar
  38. S. Reich, C. Thomsen, P. Ordej'on: Eigenvectors of chiral nanotubes, Phys. Rev. B 64, 195416 (2001) ADSGoogle Scholar
  39. J.-C. Charlier, P. Lambin: Electronic structure of carbon nanotubes with chiral symmetry, Phys. Rev. B 57, 15037 (1998) ADSGoogle Scholar
  40. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tom'anek, J. E. Fischer, R. E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 483 (1996) ADSGoogle Scholar
  41. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362 (2004) ADSGoogle Scholar
  42. L. X. Zheng, M. J. O'Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, et al.: Ultralong single-wall carbon nanotubes, Nature Mater. 3, 673 (2004) ADSGoogle Scholar
  43. M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley: J. Vac. Sci. Technol. A 19, 1800 (2001) ADSGoogle Scholar
  44. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman: J. Am. Chem. Soc. 125, 11186 (2003) Google Scholar
  45. Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama: Chem. Phys. Lett. 387, 198 (2004) ADSGoogle Scholar
  46. N. Wang, Z. K. Tang, G. D. Li, J. S. Chen: Single-walled 4,Å carbon nanotube arrays, Nature (London) 408, 50 (2000) ADSGoogle Scholar
  47. R. R. Bacsa, A. Peigney, C. Laurent, P. Puech, W. S. Bacsa: Phys. Rev. B 65, 161404 (2002) ADSGoogle Scholar
  48. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima: Chem. Phys. Lett. 337, 48 (2001) ADSGoogle Scholar
  49. T. W. Ebbesen, P. M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220 (1992) ADSGoogle Scholar
  50. D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazques, R. Beyers: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer, Nature 363, 605 (1993) ADSGoogle Scholar
  51. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756 (1997) ADSGoogle Scholar
  52. H. Dai: in M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, vol. 80, Topics in Applied Physics (Springer, Berlin, Heidelberg 2001) p. 29 Google Scholar
  53. M. Terrones: Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications, Int. Mater. Rev. 49, 325 (2005) Google Scholar
  54. A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, G. Eres: In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A: Mater. Sci. Process. 81, 223 (2005) ADSGoogle Scholar
  55. M. C. Schabel, J. L. Martins: Energetics of interplanar binding in graphite, Phys. Rev. B 46, 7185 (1992) ADSGoogle Scholar
  56. L. A. Girifalco, M. Hodak: Van der Waals binding energies in graphitic structures, Phys. Rev. B 65, 125404 (2002) ADSGoogle Scholar
  57. R. Z. H. Ulbricht, T. Hertel: Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons, Phys. Rev. B 69, 155406 (2004) ADSGoogle Scholar
  58. S. Reich, C. Thomsen, P. Ordej'on: Phys. Rev. B 65, 153407 (2002) ADSGoogle Scholar
  59. M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593 (2002) ADSGoogle Scholar
  60. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002) ADSGoogle Scholar
  61. S. Lebedkin, F. Hennrich, T. Skipa, M. M. Kappes: Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method, J. Phys. Chem. B 107, 1949 (2003) Google Scholar
  62. T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Rosenthal, J. McBride, H. Ulbricht, E. Flahaut: Spectroscopy of single- and double-wall carbon nanotubes in different environments, Nano Lett. 5, 511 (2005) ADSGoogle Scholar
  63. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen: Phys. Rev. Lett. 93, 177401 (2004) ADSGoogle Scholar
  64. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, M. A. Pimenta: Phys. Rev. Lett. 93, 147406 (2004) ADSGoogle Scholar
  65. M. S. Strano, S. K. Doorn, E. H. Haroz, C. Kittrell, R. H. Hauge, R. E. Smalley: Assignment of (n,m) Raman and optical features of metallic single-walled carbon nanotubes, Nano Lett. 3, 1091 (2003) ADSGoogle Scholar
  66. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio: Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105 (1998) ADSGoogle Scholar
  67. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, W. I. Milne: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 90, 5308 (2001) Google Scholar
  68. J. Lefebvre, Y. Homma, P. Finnie: Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes, Phys. Rev. Lett. 90, 217401 (2003) ADSGoogle Scholar
  69. J. C. Meyer, M. Paillet, G. S. Duesberg, S. Roth: Electron diffraction analysis of individual single-walled carbon nanotubes, Ultramicroscopy 106, 176 (2005) Google Scholar
  70. S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson: Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates, Appl. Phys. Lett. 83, 4661 (2003) ADSGoogle Scholar
  71. L. Guan, K. Suenaga, Z. Shi, Z. Gu, S. Iijima: Direct imaging of the alkali metal site in K-doped fullerene peapods, Phys. Rev. Lett. 94, 045502 (2005) ADSGoogle Scholar
  72. L. Henrard, A. Loiseau, C. Journet, P. Bernier: Synth. Met. 103, 2533 (1999) Google Scholar
  73. L. Henrard, A. Loiseau, C. Journet, P. Bernier: Study of the symmetry of single-wall nanotubes by electron diffraction, Eur. Phys. B 13, 661 (2000) ADSGoogle Scholar
  74. S. Reich, C. Thomsen, J. Robertson: Exciton resonances quench the photoluminescence of zigzag carbon nanotubes, Phys. Rev. Lett. 95, 077402 (2005) ADSGoogle Scholar
  75. J. Jiang, R. Saito, A. Grüneis, S. G. Chou, G. G. Samsonidze, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Photoexcited electron relaxation processes in single-wall carbon nanotubes, Phys. Rev. B 71, 045417 (2005) ADSGoogle Scholar
  76. B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated C60 in carbon nanotubes, Nature 396, 323 (1998) ADSGoogle Scholar
  77. H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, K. Suenaga, S. Iijima, S. Suzuki, Y. Achiba, W. Kratschmer: Synth. Met. 121, 1195 (2001) Google Scholar
  78. T. Pichler, H. Kuzmany, H. Kataura, Y. Achiba: Metallic polymers of C60 inside single-walled carbon nanotubes, Phys. Rev. Lett. 87, 267401 (2001) ADSGoogle Scholar
  79. J. Sloan, M. C. Novotny, S. R. Bailey, G. Brown, C. Xu, V. C. Williams, S. Friedrichs, E. Flahaut, R. L. Callender, A. P. E. York, K. S. Coleman, M. L. H. Green, R. E. Dunin-Borkowskib, J. L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61 (2000) ADSGoogle Scholar
  80. J. Diefenbach, T. P. Martin: Model calculations of alkali halide clusters, J. Chem. Phys. 83, 4585 (1985) ADSGoogle Scholar
  81. M. Damnjanovi'c, I. Miloševi'c, T. Vukovi'c, R. Sre­da­no­vi'c: Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes, Phys. Rev. B 60, 2728 (1999) ADSGoogle Scholar
  82. M. Damnjanovi'c, I. Miloševi'c, T. Vukovi'c, R. Sre­da­no­vi'c: Symmetry and lattices of single-wall nanotubes, J. Phys. A 32, 4097 (1999) ADSGoogle Scholar
  83. J. W. Mintmire, B. I. Dunlap, C. T. White: Are fullerene tubules metallic?, Phys. Rev. Lett. 68, 631 (1992) ADSGoogle Scholar
  84. M. Damnjanovi'c, T. Vukovi'c, I. Milosevi'c: Modified group projectors: Tight binding method, J. Phys. A: Math. Gen. 33, 6561 (2000) ADSMathSciNetGoogle Scholar
  85. J. Maultzsch, S. Reich, C. Thomsen, E. Dobardzi'c, I. Milo sevi'c, M. Damnjanovi'c: Phonon dispersion of carbon nanotubes, Solid State Commun. 121, 471 (2002) ADSGoogle Scholar
  86. T. Vukovi'c, I. Milosevi'c, M. Damnjanovi'c: Carbon nanotubes band assignation, topology, Bloch states, and selection rules, Phys. Rev. B 65, 045418 (2002) ADSGoogle Scholar
  87. I. Milosevi'c, T. Vukovi'c, S. Dmitrovi'c, M. Damnjanovi'c: Phys. Rev. B 67, 165418 (2003) ADSGoogle Scholar
  88. E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An ab initio symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004) ADSGoogle Scholar
  89. T. Inui, Y. Tanabe, Y. Onodera: Group Theory and its Application in Physics (Springer Verlag, Berlin Heidelberg New York 1996) Google Scholar
  90. E. B. Wilson, J. C. Decius, P. C. Cross: Molecular Vibrations (Dover, New York 1980) Google Scholar
  91. M. S. Dresselhaus, G. Dresselhaus, R. Saito: Carbon fibers based on C60 and their symmetry, Phys. Rev. B 45, 6234 (1992) ADSGoogle Scholar
  92. R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus: Symmetry properties of chiral carbon nanotubes, Phys. Rev. B 47, 16671 (1993) ADSGoogle Scholar
  93. M. S. Dresselhaus, P. C. Eklund: Adv. Phys. 49, 705 (2000) ADSGoogle Scholar
  94. A. Jorio, R. Saito, G. Dresselhaus, M. S. Dresselhaus: Determination of nanotube properties by Raman spectroscopy, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2311 Google Scholar
  95. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, G. Dresselhaus: Phonon modes in carbon nanotubules, Chem. Phys. Lett. 209, 77–82 (1993) ADSGoogle Scholar
  96. D. L. Rousseau, R. P. Bauman, S. P. S. Porto: Normal mode determination in crystals, J. Raman Spectrosc. 10, 253 (1981) ADSGoogle Scholar
  97. A. Fainstein, P. Etchegoin, M. P. Chamberlain, M. Cardona, K. Tötemeyer, K. Eberl: Selection rules and dispersion of GaAs/AlAs multiple-quantum-well optical phonons studied by Raman scattering in right-angle, forward, and backscattering in-plane geometries, Phys. Rev. B 51, 14 448 (1995) Google Scholar
  98. B. Jusserand, M. Cardona: Superlattices and other microstructures, in M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids V, vol. 66, Topics in Applied Physics (Springer, Berlin 1989) p. 49 Google Scholar
  99. G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth: Polarized Raman spectroscopy of individual single-wall carbon nanotubes, Phys. Rev. Lett. 85, 5436 (2000) ADSGoogle Scholar
  100. A. Ugawa, A. G. Rinzler, D. B. Tanner: Far-infrared gaps in single-wall carbon nanotubes, Phys. Rev. B 60, R11 305 (1999) Google Scholar
  101. S. Reich, C. Thomsen, G. S. Duesberg, S. Roth: Intensities of the Raman active modes in single and multiwall nanotubes, Phys. Rev. B 63, R041401 (2001) ADSGoogle Scholar
  102. A. Jorio, A. G. S. Filho, V. W. Brar, A. K. Swan, M. S. "Unlü, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 65, 121402 (2002) ADSGoogle Scholar
  103. E. Dobardzi' c, I. M. B. Nikoli'c, T. Vukovi'c, M. Damnjanovi'c: Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations, Phys. Rev. B 68, 045,408 (2003) Google Scholar
  104. M. Damnjanovi'c, E. Dobardzi' c, I. Milosevi'c: Chirality dependence of the radial breathing mode: a simple model, J. Phys.: Condens. Matter 16, L505 (2004) ADSGoogle Scholar
  105. G. D. Mahan: Phys. Rev. B 65, 235402 (2002) ADSGoogle Scholar
  106. R. Nicklow, N. Wakabayashi, H. G. Smith: Lattice dynamics of pyrolytic graphite, Phys. Rev. B 5, 4951 (1972) ADSGoogle Scholar
  107. O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, T. Weng: Elastic constants of compression-annealed pyrolytic graphite, J. Appl. Phys. 41, 3373 (1970) ADSGoogle Scholar
  108. E. J. Seldin, C. W. Nezbeda: Elastic constants and electron-microscope observations of neutron-irradiated compression-annealed pyrolytic and single-crystal graphite, J. Appl. Phys. 41, 3389 (1970) ADSGoogle Scholar
  109. L. Wirtz, A. Rubio, R. A. de la Concha, A. Loiseau: Phys. Rev. B 68, 45425 (2003) ADSGoogle Scholar
  110. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, R. Haddon: Chemistry of single-walled nanotubes, Acc. Chem. Res. 35, 1105 (2002) Google Scholar
  111. A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, J. Jiang, N. Kobayashi, A. Grüneis, R. Saito: Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes, Phys. Rev. B 71, 075,401 (2005) Google Scholar
  112. V. N. Popov, L. Henrard: Phys. Rev. B 65, 235415 (2002) ADSGoogle Scholar
  113. E. Dobardzi' c, J. Maultzsch, I. Milosevi'c, C. Thomsen, M. Damnjanovi'c: phys. stat. sol. (b) 237, R7 (2003) ADSGoogle Scholar
  114. G. Wu, J. Zhou, J. Dong: Radial-breathing-like phonon modes of double-walled carbon nanotubes, Phys. Rev. B 72, 115,418 (2005) Google Scholar
  115. C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Z'olyomi, J. Kürti: Assignment of chiral vectors in carbon nanotubes, Phys. Rev. B 68, 235,404 (2003) Google Scholar
  116. R. Pfeiffer, H. Kuzmany, C. Kramberger, C. Schaman, T. Pichler, H. Kataura, Y. Achiba, J. Kürti, V. Z'olyomi: Phys. Rev. Lett. 90, 225501 (2003) ADSGoogle Scholar
  117. A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, Y. Nishina: Evidence for size-dependent discrete dispersions in single-wall nanotubes, Phys. Rev. Lett. 78, 4434 (1997) ADSGoogle Scholar
  118. O. Dubay, G. Kresse: Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67, 035,401 (2003) Google Scholar
  119. C. Thomsen, S. Reich, P. Ordej'on: initio determination of the phonon deformation potentials of graphene, Phys. Rev. B 65, 073403 (2002) ADSGoogle Scholar
  120. S. A. Solin, A. K. Ramdas: Raman spectrum of diamond, Phys. Rev. B 1, 1687 (1970) ADSGoogle Scholar
  121. J. Kulda, H. Kainzmaier, D. Strauch, B. Dorner, M. Lorenzen, M. Krisch: Phys. Rev. B 66, 241202(R) (2002) ADSGoogle Scholar
  122. S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, J. Robertson: Resonant Raman scattering in cubic and hexagonal boron nitride, Phys. Rev. B 71, 205201 (2005) ADSGoogle Scholar
  123. G. Kern, G. Kress, J. Hafner: -initio lattice dynamics and phase diagram of boron nitride, Phys. Rev. B 59, 8851 (1999) ADSGoogle Scholar
  124. S. Reich, H. Jantoljak, C. Thomsen: Shear strain in carbon nanotubes under hydrostatic pressure, Phys. Rev. B 61, R13 389 (2000) Google Scholar
  125. S. Reich, C. Thomsen: Raman spectroscopy of graphite, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2271 Google Scholar
  126. R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus: Chirality-dependent G-band Raman intensity of carbon nanotubes, Phys. Rev. B 64, 085312 (2001) ADSGoogle Scholar
  127. S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, J. Robertson: Phys. Rev. Lett. 93, 185503 (2004) ADSGoogle Scholar
  128. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Electron transport and hot phonons in carbon nanotubes, Phys. Rev. Lett. 95, 236802 (2005) ADSGoogle Scholar
  129. J. Maultzsch, S. Reich, U. Schlecht, C. Thomsen: High-energy phonon branches of an individual metallic carbon nanotube, Phys. Rev. Lett. 91, 087402 (2003) ADSGoogle Scholar
  130. Z. M. Li, V. N. Popov, Z. K. Tang: A symmetry-adapted force-constant lattice-dynamical model for single-walled carbon nanotubes, Solid State Commun. 130, 657 (2005) Google Scholar
  131. S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp: Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Phys. Rev. B 63, 155414 (2001) ADSGoogle Scholar
  132. K. Kempa: Phys. Rev. B 66, 195406 (2002) ADSGoogle Scholar
  133. O. Dubay, G. Kresse, H. Kuzmany: Phys. Rev. Lett. 88, 235506 (2002) ADSGoogle Scholar
  134. P. Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer-Verlag, Berlin 1996) zbMATHGoogle Scholar
  135. X. Blase, L. X. Benedict, E. L. Shirley, S. G. Louie: Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. 72, 1878 (1994) ADSGoogle Scholar
  136. M. Damnjanovi'c, T. Vukovi'c, I. Milosevi'c: Fermi level quantum numbers and secondary gap of conducting carbon nanotubes, Solid State Commun. 116, 265 (2000) Table 1 in the reference contains a small error: For chiral tubes and the k quantum numbers kF=2qπ/3na for =3 tubes and kF=0 for =1 nanotubes. ADSGoogle Scholar
  137. A. Kleiner, S. Eggert: Curvature, hybridization, and STM images of carbon nanotubes, Phys. Rev. B 64, 113402 (2001) ADSGoogle Scholar
  138. W. Kohn: Image of the Fermi Surface in the Vibration Spectrum of a Metal, Phys. Rev. Lett. 2, 393 (1959) ADSGoogle Scholar
  139. M. V. Klein: Raman studies of phonon anomalies in transition-metal compounds, in M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids III, vol. 51, Topics in Applied Physics (Springer, Berlin 1982) p. 121 Google Scholar
  140. K.-P. Bohnen, R. Heid, H. J. Liu, C. T. Chan: Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes, Phys. Rev. Lett. 93, 245501 (2004) ADSGoogle Scholar
  141. S. Piscanec, M. Lazzeri, A. C. Ferrari, F. Mauri, J. Robertson: private communication Google Scholar
  142. D. Conn'etable, G.-M. Rignanese, J.-C. Charlier, X. Blase: Room temperature Peierls distortion in small diameter nanotubes, Phys. Rev. Lett. 94, 015503 (2005) ADSGoogle Scholar
  143. J. Kürti, G. Kresse, H. Kuzmany: First-principles calculations of the radial breathing mode of single-wall carbon nanotubes, Phys. Rev. B 58, 8869 (1998) ADSGoogle Scholar
  144. M. Mach'on, S. Reich, H. Telg, J. Maultzsch, P. Ordej'on, C. Thomsen: Phys. Rev. B 71, 35416 (2005) ADSGoogle Scholar
  145. C. Thomsen: Second-order Raman spectra of single and multi-walled carbon nanotubes, Phys. Rev. B 61, 4542 (2000) ADSGoogle Scholar
  146. A. C. Ferrari, J. Robertson: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, in (2004) p. 2477 of Ref. 04 Google Scholar
  147. H. H. Gommans, J. W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A. G. Rinzler: Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy, J. Appl. Phys. 88, 2509 (2000) ADSGoogle Scholar
  148. N. Hamada, S.-I. Sawada, A. Oshiyama: New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579 (1992) ADSGoogle Scholar
  149. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804 (1992) ADSGoogle Scholar
  150. S. Reich, C. Thomsen: Chirality dependence of the density-of-states singularities in carbon nanotubes, Phys. Rev. B 62, 4273 (2000) ADSGoogle Scholar
  151. G. G. Samsonidze, R. Saito, A. Jorio, M. A. Pimenta, A. G. Souza, A. Gruneis, G. Dresselhaus, M. S. Dresselhaus: The concept of cutting lines in carbon nanotube science, J. Nanosci. Nanotech. 3, 431 (2003) Google Scholar
  152. R. F. Willis, B. Feuerbacher, B. Fitton: Graphite conduction band states from secondary electron emission spectra, Phys. Lett. A 34, 231 (1971) ADSGoogle Scholar
  153. J. W. Mintmire, C. T. White: Universal density of states for carbon nanotubes, Phys. Rev. Lett. 81, 2506 (1998) ADSGoogle Scholar
  154. M. Machon, S. Reich, C. Thomsen, D. S'anchez-Portal, P. Ordej' on: Phys. Rev. B 66, 155410 (2002) ADSGoogle Scholar
  155. Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, S. Tsuda: Polarized absorption spectra of single-walled 4,Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal, Phys. Rev. Lett. 87, 127401 (2001) ADSGoogle Scholar
  156. T. Miyake, S. Saito: Quasiparticle band structure of carbon nanotubes, Phys. Rev. B 68, 155424 (2003) ADSGoogle Scholar
  157. V. Barone, G. E. Scuseria: Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: Beyond the local density approximation, J. Chem. Phys. 121, 10376 (2004) ADSGoogle Scholar
  158. V. N. Popov, L. Henrard: Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models, Phys. Rev. B 70, 115470 (2004) Google Scholar
  159. V. Z'olyomi, J. Kürti: First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes, Phys. Rev. B 70, 085403 (2004) ADSGoogle Scholar
  160. V. Perebeinos, J. Tersoff, P. Avouris: Phys. Rev. Lett. 92, 257402 (2004) ADSGoogle Scholar
  161. H. Zhao, S. Mazumdar: Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 95, 157,402 (2005) Google Scholar
  162. A. Grüneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 67, 165402 (2003) ADSGoogle Scholar
  163. C. T. White, J. W. Mintmire: Density of states reflects diameter in nanotubes, Nature (London) 394, 29 (1998) ADSGoogle Scholar
  164. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber: Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62 (1998) ADSGoogle Scholar
  165. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker: Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59 (1998) ADSGoogle Scholar
  166. H. Ajiki, T. Ando: Carbon nanotubes: Optical absorption in Aharonov-Bohm flux, Jpn. J. Appl. Phys. Suppl. 34-1, 107 (1994) Google Scholar
  167. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: Optical properties of single-wall carbon nanotubes, Synth. Met. 103, 2555 (1999) Google Scholar
  168. P. M. Rafailov, H. Jantoljak, C. Thomsen: Electronic transitions in single-walled carbon nanotubes: A resonance Raman study, Phys. Rev. B 61, 16 179 (2000) Google Scholar
  169. R. Saito, G. Dresselhaus, M. S. Dresselhaus: Trigonal warping effect of carbon nanotubes, Phys. Rev. B 61, 2981 (2000) ADSGoogle Scholar
  170. V. N. Popov, L. Henrard, P. Lambin: Nano Lett. 4, 1795 (2004) ADSGoogle Scholar
  171. R. B. Capaz, C. D. Spataru, P. Tagney, M. L. Cohen, S. G. Louie: Temperature dependence of the band gap of semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 036801 (2005) ADSGoogle Scholar
  172. X.-F. He: Excitons in anisotropic solids: The model of fractional-dimensional space, Phys. Rev. B 43, 2063 (1991) ADSGoogle Scholar
  173. P. Lefebvre, P. Cristol, H. Mathieu: Unified formulation of excitonic spectra of semiconductor quantum wells, superlattices, and quantum wires, Phys. Rev. B 48, 17308 (1993) ADSGoogle Scholar
  174. C. L. Kane, E. J. Mele: Phys. Rev. Lett. 93, 197402 (2004) ADSGoogle Scholar
  175. S. G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H. B. Ribeiro, A. Jorio, M. A. Pimenta, G. G. Samsonidze, A. P. Santos, M. Zheng, G. B. Onoa, E. D. Semke, G. Dresselhaus, M. S. Dresselhaus: Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy, Phys. Rev. Lett. 94, 127402 (2005) ADSGoogle Scholar
  176. S. Lebedkin, K. Arnold, F. Hennrich, R. Krupke, B. Renker, M. M. Kappes: FTIR-luminescence mapping of dispersed single-walled carbon nanotubes, New J. Phys. 5, 140 (2003) ADSGoogle Scholar
  177. X. H. Qiu, M. Freitag, V. Perebeinos, P. Avouris: Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states, Nano Lett. 5, 749 (2005) ADSGoogle Scholar
  178. J.-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, L. Capes: Phys. Rev. Lett. 90, 57404 (2003) ADSGoogle Scholar
  179. T. Hertel, G. Moos: Phys. Rev. Lett. 84, 5002 (2000) ADSGoogle Scholar
  180. G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, R. E. Smalley: Phys. Rev. Lett. 92, 117402 (2004) ADSGoogle Scholar
  181. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. S. Strano: Excited-state carrier lifetime in single-walled carbon nanotubes, Phys. Rev. B 71, 033402 (2005) ADSGoogle Scholar
  182. O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, R. H. Baughman: Phys. Rev. Lett. 92, 17403 (2004) ADSGoogle Scholar
  183. M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids I–VIII (Springer, Berlin, Heidelberg 1982–2000) Google Scholar
  184. M. Cardona: Resonance phenomena, in M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids II, vol. 50, Topics in Applied Physics (Springer, Berlin 1982) p. 19 Google Scholar
  185. R. M. Martin, L. M. Falicov: Resonant Raman scattering, in M. Cardona (Ed.): Light Scattering in Solids I: Introductory Concepts, vol. 8, 2 ed., Topics in Applied Physics (Springer-Verlag, Berlin Heidelberg New York 1983) p. 79 Google Scholar
  186. J. Maultzsch: Vibrational properties of carbon nanotubes and graphite, Ph.D. thesis, Technische Universität Berlin, Berlin (2004) Google Scholar
  187. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science 275, 187 (1997) Google Scholar
  188. M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus: Raman modes of metallic carbon nanotubes, Phys. Rev. B 58, R16 016 (1998) Google Scholar
  189. M. Milnera, J. Kürti, M. Hulman, H. Kuzmany: Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett. 84, 1324 (2000) ADSGoogle Scholar
  190. R. R. Schlittler, J. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah, M. E. Welland: Science 292, 1136 (2001) ADSGoogle Scholar
  191. M. F. Chisholm, Y. H. Wang, A. R. Lupini, G. Eres, A. A. Puretzky, B. Brinson, A. V. Melechko, D. B. Geohegan, H. T. Cui, M. P. Johnson, S. J. Pennycook, D. H. Lowndes, S. Arepalli, C. Kittrell, S. Sivaram, M. Kim, G. Lavin, J. Kono, R. Hauge, R. E. Smalley: Science 300, 5623 (2001) Google Scholar
  192. M. E. Welland, C. Durkan, M. S. M. Saifullah, J. W. Seo, R. R. Schlittler, J. K. Gimzewski: Science 300, 1236 (2001) Google Scholar
  193. S. Hofmann, C. Ducati, J. Robertson: Low-temperature self-assembly of novel encapsulated compound nanowires, Adv. Mater. 14, 1821 (2002) Google Scholar
  194. J. Maultzsch, S. Reich, C. Thomsen: Raman scattering in carbon nanotubes revisited, Phys. Rev. B 65, 233402 (2002) ADSGoogle Scholar
  195. Y. Miyauchi, S. Maruyama: Identification of excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes, Phys. Rev. Lett. (2005) submitted, cond-mat/0508232 Google Scholar
  196. C. Fantini, A. Jorio, M. Souza, L. Ladeira, A. S. Filho, R. Saito, G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta: One-dimensional character of combination modes in the resonance Raman scattering of carbon nanotubes, Phys. Rev. Lett. 93, 087401 (2004) ADSGoogle Scholar
  197. F. Simon, C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Z'olyomi, J. Kürti, P. M. Singer, H. Alloul: Isotope engineering of carbon nanotube systems, Phys. Rev. Lett. 95, 017401 (2005) ADSGoogle Scholar
  198. G. Bussi, J. Men'endez, J. Ren, M. Canonico, E. Molinari: Quantum interferences in the Raman cross section for the radial breathing mode in metallic carbon nanotubes, Phys. Rev. B 71, 041404 (2005) ADSGoogle Scholar
  199. C. Trallero-Giner, A. Cantarero, M. Cardona, M. Mora: Phys. Rev. B 45, 6601 (1992) ADSGoogle Scholar
  200. M. Canonico, G. B. Adams, C. Poweleit, J. Men'endez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, J. Rubio: Phys. Rev. B 65, 201402(R) (2002) ADSGoogle Scholar
  201. G. Bussi, J. Men'endez, J. Ren, M. Canonico, E. Molinari: Quantum interferences in the Raman cross section for the radial breathing mode in metallic carbon nanotubes, Phys. Rev. B 71, 041404 (2005) ADSGoogle Scholar
  202. J. Mathews, R. L. Walker: Mathematical Methods of Physics, 2 ed. (Addison-Wesley, Redwood City 1970) Google Scholar
  203. A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus, R. Saito, J. H. Hafner, C. M. Lieber, F. M. Matinaga, M. S. S. Dantas, M. A. Pimenta: Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering, Phys. Rev. B 63, 245416 (2001) ADSGoogle Scholar
  204. A. G. S. Filho, A. Jorio, J. H. Hafner, C. M. Lieber, R. Saito, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus: Electronic transition energy Eii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio, Phys. Rev. B 63, 241404 (2001) ADSGoogle Scholar
  205. A. G. Souza Filho, S. G. Chou, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, L. An, J. Liu, A. K. Swan, M. S. "Unlü, B. B. Goldberg, A. Jorio, A. Grüneis, R. Saito: Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes, Phys. Rev. B 69, 115,428 (2004) Google Scholar
  206. J. Maultzsch, S. Reich, C. Thomsen: Chirality selective Raman scattering of the D-mode in carbon nanotubes, Phys. Rev. B 64, 121407(R) (2001) ADSGoogle Scholar
  207. J. Maultzsch, S. Reich, C. Thomsen: Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion, Phys. Rev. B 70, 155403 (2004) ADSGoogle Scholar
  208. S. I. Gubarev, T. Ruf, M. Cardona: Doubly resonant Raman scattering in the semimagnetic semiconductor Cd0.95Mn0.05Te, Phys. Rev. B 43, 1551 (1991) ADSGoogle Scholar
  209. V. Sapega, M. Cardona, K. Ploog, E. Irchenko, D. Mirlin: Spin-flip Raman scattering in GaAs/AlxGa1-xAs multiple quantum wells, Phys. Rev. B 45, 4320 (1992) ADSGoogle Scholar
  210. R. P. Vidano, D. B. Fischbach, L. J. Willis, T. M. Loehr: Observation of Raman band shifting with excitation wavelength for carbons and graphites, Solid State Commun. 39, 341 (1981) ADSGoogle Scholar
  211. P.-H. Tan, Y.-M. Deng, Q. Zhao: Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite, Phys. Rev. B 58, 5435 (1998) ADSGoogle Scholar
  212. V. A. Gaisler, I. G. Neizvestnyi, M. P. Singukov, A. B. Talochkin: JETP Lett. 45, 441 (1987) ADSGoogle Scholar
  213. D. Mowbray, H. Fuchs, D. Niles, M. Cardona, C. Thomsen, B. Friedl: Raman study of the Ge phonon side band, in E. Anastassakis, J. Joannopoulos (Eds.): 20th International Conference on the Physics of Semiconductors (World Scientific, Singapore 1990) p. 2017 Google Scholar
  214. M. Mohr, M. Mach'on, J. Maultzsch, C. Thomsen: Double-resonant Raman processes in germanium: Group theory and initio calculations, Phys. Rev. B 73, 035217 (2006) ADSGoogle Scholar
  215. I. P'ocsik, M. Hundhausen, M. Koos, L. Ley: Origin of the D peak in the Raman spectrum of microcrystalline graphite, J. Non-Cryst. Solids 227–230B, 1083 (1998) Google Scholar
  216. Y. Wang, D. C. Alsmeyer, R. L. McCreery: Raman spectroscopy of carbon materials: Structural basis of observed spectra, Chem. Mater. 2, 557 (1990) Google Scholar
  217. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo: Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B 59, R6585 (1999) ADSGoogle Scholar
  218. F. Tuinstra, J. L. Koenig: Raman spectrum of graphite, J. Chem. Phys. 53, 1126 (1970) ADSGoogle Scholar
  219. V. Z'olyomi, J. Kürti: Phys. Rev. B 66, 73418 (2002) ADSGoogle Scholar
  220. C. Mapelli, C. Castiglioni, G. Zerbi, K. Müllen: Phys. Rev. B 60, 12710 (1999) ADSGoogle Scholar
  221. C. Castiglioni, F. Negri, M. Rigolio, G. Zerbi: J. Chem. Phys. 115, 3769 (2001) ADSGoogle Scholar
  222. A. Ferrari, J. Robertson: Phys. Rev. B 64, 75414 (2001) ADSGoogle Scholar
  223. P. Tan, L. An, L. Liu, Z. Guo, R. Czerw, D. L. Carroll, P. M. Ajayan, N. Zhang, H. Guo: Phys. Rev. B 66, 245410 (2002) ADSGoogle Scholar
  224. L. D. Landau, E. M. Lifschitz: Elektrodynamik der Kontinua (Akademie-Verlag, Berlin 1967) zbMATHGoogle Scholar
  225. L. X. Benedict, S. G. Louie, M. L. Cohen: Phys. Rev. B 52, 8541 (1995) ADSGoogle Scholar
  226. S. Tasaki, K. Maekawa, T. Yamabe: π -band contribution to the optical properties of carbon nanotubes: Effects of chirality, Phys. Rev. B 57, 9301 (1998) ADSGoogle Scholar
  227. C. Thomsen, S. Reich, P. M. Rafailov, H. Jantoljak: Symmetry of the high-energy modes in carbon nanotubes, phys. stat. sol. B 214, R15 (1999) ADSGoogle Scholar
  228. J. Hwang, H. H. Gommans, A. Ugawa, H. Tashiro, R. Haggenmueller, K. I. Winey, J. E. Fischer, D. B. Tanner, A. G. Rinzler: Polarized spectroscopy of aligned single-wall carbon nanotubes, Phys. Rev. B 62, R13 310 (2000) Google Scholar
  229. A. Hartschuh, E. J. S'anchez, X. S. Xie, L. Novotny: Phys. Rev. Lett. 90, 95503 (2003) ADSGoogle Scholar
  230. C. Thomsen, S. Reich, J. Maultzsch: Resonant Raman spectroscopy of nanotubes, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2337 Google Scholar
  231. H. Kuzmany, R. Pfeiffer, M. Hulman, C. Kramberger: Raman spectroscopy of fullerenes and fullerene-nanotube composites, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2375 Google Scholar
  232. R. Pfeiffer, H. Kuzmany, T. Pichler, H. Kataura, Y. Achiba, M. Melle-Franco, F. Zerbetto: Electronic and mechanical coupling between guest and host in carbon peapods, Phys. Rev. B 69, 035404 (2004) ADSGoogle Scholar
  233. P. M. Rafailov, V. G. Hadjiev, H. Jantoljak, C. Thomsen: Raman depolarization ratio of vibrational modes in solid C60, Solid State Commun. 112, 517 (1999) ADSGoogle Scholar
  234. W. Hayes, R. Loudon: Scattering of Light by Crystals (Wiley and Sons Inc., New York 1978) Google Scholar
  235. P. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashiri, R. Tenne: Orientation dependence of the polarizability of an individual WS2 nanotube by resonant Raman spectroscopy, Phys. Rev. B 72, 205436 (2005) ADSGoogle Scholar
  236. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Phys. Rev. Lett. 86, 1118 (2001) ADSGoogle Scholar
  237. H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba: Determination of SWCNT diameters from the Raman response of the radial breathing mode, Eur. Phys. J. B 22, 307 (2001) ADSGoogle Scholar
  238. C. L. Kane, E. J. Mele: Phys. Rev. Lett. 90, 207401 (2003) ADSGoogle Scholar
  239. G. G. Samsonidze, R. Saito, N. Kobayashi, A. Grüneis, J. Jiang, A. Jorio, S. G. Chou, G. Dresselhaus, M. S. Dresselhaus: Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters, Appl. Phys. Lett. 85, 5703 (2005) ADSGoogle Scholar
  240. C. Thomsen, H. Telg, J. Maultzsch, S. Reich: Chirality assignments in carbon nanotubes based on resonant Raman scattering, phys. stat. sol. 242 (2005) Google Scholar
  241. S. K. Doorn, D. A. Heller, P. W. Barone, M. L. Usrey, M. S. Strano: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution, Appl. Phys. A: Mater. Sci. Process. 78, 1147 (2004) ADSGoogle Scholar
  242. J. Maultzsch, H. Telg, S. Reich, C. Thomsen: Resonant Raman scattering in carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B 72, 205438 (2005) ADSGoogle Scholar
  243. I. Farkas, D. Helbing, T. Vicsek: Nature 419, 131 (2002) ADSGoogle Scholar
  244. C. Thomsen, S. Reich, A. R. Go~ni, H. Jantoljak, P. Rafailov, I. Loa, K. Syassen, C. Journet, P. Bernier: Intramolecular interaction in carbon nanotube ropes, phys. stat. sol. B 215, 435 (1999) ADSGoogle Scholar
  245. M. J. O'Connell, S. Sivaram, S. K. Doorn: Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed hipco nanotubes, Phys. Rev. B 69, 235,415 (2004) Google Scholar
  246. R. B. Weisman, S. M. Bachilo: Nano Lett. 3, 1235 (2003) ADSGoogle Scholar
  247. A. Hagen, G. Moos, V. Talalaev, T. Hertel: Electronic structure and dynamics of optically excited single-wall carbon nanotubes, Appl. Phys. A: Mater. Sci. Process. 78, 1137 (2004) ADSGoogle Scholar
  248. R. Krupke: (2005) private communication Google Scholar
  249. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M. S. Dresselhaus: Raman intensity of single-wall carbon nanotubes, Phys. Rev. B 57, 4145 (1998) ADSGoogle Scholar
  250. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Phonon linewidths and electron phonon coupling in nanotubes, Phys. Rev. B 73, 155426 (2006) ADSGoogle Scholar
  251. H. Telg, J. Maultzsch, S. Reich, C. Thomsen: Chirality dependence of the high-energy Raman modes in carbon nanotubes, in H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.): Electronic Properties of Novel Materials, IWEPNM Kirchberg (2005) p. 162 Google Scholar
  252. M. Paillet, P. Poncharal, A. Zahab, J.-L. Sauvajol, J. C. Meyer, S. Roth: Vanishing of the Breit-Wigner-Fano component in individual single-wall carbon nanotubes, Phys. Rev. Lett. 94, 237,401 (2005) Google Scholar
  253. C. Thomsen, J. Maultzsch, H. Telg, S. Reich: private communication Google Scholar
  254. A. J. Shields, M. P. Chamberlain, M. Cardona, K. Eberl: Raman scattering due to interface optical phonons in GaAs/AlAs multiple quantum wells, Phys. Rev. B 51, 17 728 (1995) Google Scholar
  255. C. Liu, A. J. Bard, F. Wudl, I. Weitz, J. R. Heath: Electrochem. Solid-State Lett. 2, 577 (1999) Google Scholar
  256. A. S. Claye, J. E. Fisher, C. B. Huffman, A. G. Rinzler, R. E. Smalley: J. Electrochem. Soc. 147, 2845 (2000) Google Scholar
  257. S. J. Tans, A. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature (London) 393, 6680 (1998) Google Scholar
  258. A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan: Nature (London) 424, 171 (2003) ADSGoogle Scholar
  259. A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 388, 257 (1997) ADSGoogle Scholar
  260. S. Kazaoui, N. Minami, R. Jacquemin: Phys. Rev. B 60, 13339 (1999) ADSGoogle Scholar
  261. L. Grigorian, K. A. Williams, S. Fang, G. U. Sumanasekera, A. L. Loper, E. C. Dickey, S. J. Pennycook, P. C. Eklund: Phys. Rev. Lett. 80, 5560 (1998) ADSGoogle Scholar
  262. N. Bendiab, L. Spina, A. Zahab, P. Poncharal, C. Marliere, J. L. Bantignies, E. Anglaret, J. L. Sauvajol: Phys. Rev. B 63, 153407 (2001) ADSGoogle Scholar
  263. N. Bendiab, E. Anglaret, J. L. Bantignies, A. Zahab, J. L. Sauvajol, P. Petit, C. Mathis, S. Lefrant: Phys. Rev. B 64, 245424 (2001) ADSGoogle Scholar
  264. T. Pichler, A. Kukovecz, H. Kuzmany, H. Kataura, Y. Achiba: Phys. Rev. B 67, 125416 (2003) ADSGoogle Scholar
  265. L. Kavan, P. Rapta, L. Dunsch: Raman and Vis-NIR spectroelectrochemistry at single-walled carbon nanotubes, Chem. Phys. Lett. 328, 363 (2000) ADSGoogle Scholar
  266. L. Kavan, L. Dunsch, H. Kataura: Carbon 42, 1011 (2004) Google Scholar
  267. P. Rafailov, J. Maultzsch, C. Thomsen, H. Kataura: Electrochemical switching of the Peierls-like transition in metallic single-walled carbon nanotubes, Phys. Rev. B 72, 045411 (2005) ADSGoogle Scholar
  268. P. Corio, A. Jorio, N. Demir, et al.: Spectro-electrochemical studies of single wall carbon nanotubes films, Chem. Phys. Lett. 392, 396 (2004) ADSGoogle Scholar
  269. L. Kavan, P. Rapta, L. Dunsch, M. J. Bronikowski, P. Willis, R. Smalley: J. Phys. Chem. B 105, 10764 (2001) Google Scholar
  270. J. N. Barisci, G. G. Wallace, R. H. Baughman, L. Dunsch: J. Electroanalyt. Chem. 488, 92 (2000) Google Scholar
  271. M. Stoll, P. M. Rafailov, W. Frenzel, C. Thomsen: Chem. Phys. Lett. 375, 625 (2003) ADSGoogle Scholar
  272. S. Gupta, M. Hughes, A. H. Windle, J. Robertson: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy, J. Appl. Phys. 95, 2038 (2004) ADSGoogle Scholar
  273. P. Rafailov, M. Stoll, C. Thomsen: J. Phys. Chem. Solids 108, 19241 (2004) Google Scholar
  274. P. Corio, P. S. Santos, V. W. Brar, G. G. Samsonidze, S. G. Chou, M. S. Dresselhaus: Chem. Phys. Lett. 370, 675 (2003) ADSGoogle Scholar
  275. L. Kavan, L. Dunsch, H. Kataura: Chem. Phys. Lett. 361, 79 (2002) ADSGoogle Scholar
  276. N. W. Ashcroft, N. D. Mermin: Solid State Physics (Saunders College, Philadelphia 1976) Google Scholar
  277. J. B. Renucci, R. N. Tyte, M. Cardona: Resonant Raman scattering in silicon, Phys. Rev. B 11, 3885 (1975) ADSGoogle Scholar
  278. R. Trommer, M. Cardona: Phys. Rev. B 17, 1865 (1973) ADSGoogle Scholar
  279. J. M. Calleja, J. Kuhl, M. Cardona: Phys. Rev. B 17, 876 (1978) ADSGoogle Scholar
  280. S. V. Goupalov: Chirality dependence in the Raman cross section, Phys. Rev. B 71, 153404 (2005) ADSGoogle Scholar
  281. F. S. Khan, P. B. Allen: Deformation potentials and electron-phonon scattering: Two new theorems, Phys. Rev. B 29, 3341 (1984) ADSGoogle Scholar
  282. J. Jiang, R. Saito, A. Grüneis, S. G. Chou, G. G. Samsonidze, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes, Phys. Rev. B 71, 205420 (2005) ADSGoogle Scholar
  283. R. E. Peierls: Quantum Theory of Solids (Oxford University Press, New York 1955) zbMATHGoogle Scholar
  284. A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. "Unlü, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, R. Saito: Phys. Rev. B 65, 155412 (2002) ADSGoogle Scholar
  285. J. Kürti, V. Z'olyomi, A. Grüneis, H. Kuzmany: Phys. Rev. B 65, 165433 (2002) ADSGoogle Scholar
  286. C. Jiang, J. Zhao, H. A. Therese, M. Friedrich, A. Mews: J. Phys. Chem. B 107, 8742 (2003) Google Scholar
  287. L. Cancado, M. A. Pimenta, B. R. A. Nevesand, M. S. S. Dantas, A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett. 93, 247401 (2004) ADSGoogle Scholar
  288. M. Mach'on, S. Reich, J. Maultzsch, H. Okudera, A. Simon, R. Herges, C. Thomsen: Structural, electronic and vibrational properties of (4,4) picotube crystals, Phys. Rev. B 72, 155,402 (2005) Google Scholar
  289. S. Kammermeier, P. G. Jones, R. Herges: Angew. Chem. Int. Ed. Engl. 35, 2669 (1996) Google Scholar
  290. S. Kammermeier, P. G. Jones, R. Herges: Angew. Chem. 108, 2834 (1996) Google Scholar
  291. M. Souza, A. J. C. Fantini, B. R. A. Neves, M. A. Pimenta, R. Saito, A. Ismach, E. Joselevich, V. W. Brar, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus: Single- and double-resonance Raman G-band processes in carbon nanotubes, Phys. Rev. B 69, 241403 (2004) ADSGoogle Scholar
  292. J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw, D. L. Carroll, S. M. C. Vieira, P. R. Birkett, C. A. Rego: Raman characterization of boron-doped multiwalled carbon nanotubes, Appl. Phys. Lett. 81, 2647 (2002) ADSGoogle Scholar
  293. R. J. Nemanich, S. A. Solin: First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B 20, 392 (1979) ADSGoogle Scholar
  294. M. Reedyk, C. Thomsen, M. Cardona, J. S. Xue, J. E. Greedan: Observation of the effects of phonon dispersion on the Fröhlich-interaction-induced second-order Raman scattering in Pb2Sr2PrCu3O8, Phys. Rev. B 50, 13762 (1994) ADSGoogle Scholar
  295. R. Saito, A. Jorio, A. G. Souza-Filho, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta: Phys. Rev. Lett. 88, 27401 (2002) ADSGoogle Scholar
  296. Y. Kawashima, G. Katagiri: Phys. Rev. B 52, 10053 (1995) ADSGoogle Scholar
  297. P. Tan, C. Hu, J. Dong, W. Shen, B. Zhang: Phys. Rev. B 64, 214301 (2001) ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  • Christian Thomsen
    • 1
  • Stephanie Reich
    • 2
  1. 1.Institut für Festkörperphysik, PN5-4Technische Universität BerlinBerlinGermany
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations