Advertisement

Directional Evolution of Virus Within a Host Under Immune Selection

  • Yoh Iwasa
  • Franziska Michor
  • Martin Nowak
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Summary

Viruses, such as the human immunodeficiency virus, the hepatitis B virus, the hepatitis C virus, undergo many rounds of inaccurate reproduction within an infected host. They form a heterogeneous quasispecies and change their property following selection pressures. We analyze models for the evolutionary dynamics of viral or other infectious agents within a host, and study how the invasion of a new strain affects the composition and diversity of the viral population. We previously proved, under strain specific immunity, that (Addo et al. 2003) the equilibrium abundance of uninfected cells declines during viral evolution, and that (Bittner et al. 1997) the absolute force of infection increases during viral evolution. Here we extend the results to a wider class of models describing the interaction between the virus population and the immune system. We study virus induced impairment of the immune response and certain cross-reactive stimulation of specific immune responses. For nine different mathematical models, virus evolution reduces the equilibrium abundance of uninfected cells and increases the rate at which uninfected cells are infected. Thus, in general, virus evolution tends to increase its pathogenicity. Those trends however do not hold for general cross-reactive immune responses, which introduce frequency dependent selection among viral strains. Hence an idea for combating HIV infection is to construct a virus mutant that can outcompete the existing infection without being pathogenic itself.

Keywords

Directional Evolution Successful Invasion Uninfected Cell Viral Evolution Equilibrium Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addo, M.M., X.G. Yu, A. Rathod, D. Cohen, R.L. Eldridge, D. Strick, M.N. Johnston, C. Corcoran, A.G. Wurcel, C.A. Fitzpatrick, M.E. Feeney, W.R. Rodriguez, N. Basgoz, R. Draenert, D.R. Stone, C. Brander, P.J. Goulder, E.S. Rosenberg, M. Altfeld and B.D. Walker (2003), Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol., 77.Google Scholar
  2. 2.
    Bittner, B., S. Bonhoeffer, M. A. Nowak (1997), Virus load and antigenic diversity, Bull Math Biol., 59.Google Scholar
  3. 3.
    Bonhoeffer, S. and M. A. Nowak (1994), Can live attenuated virus work as post-exposure treatment? Immunology Today, 16.Google Scholar
  4. 4.
    Bonhoeffer, S., E.G. Holmes and M.A. Nowak, (1995). Causes of HIV diversity. Nature 376, 125.CrossRefGoogle Scholar
  5. 5.
    Bonhoeffer, S., R.M. May, G.M. Shaw and M.A. Nowak (1997), Virus dynamics and drug therapy. Pro. Nat. Acad. Sci. USA, 94.Google Scholar
  6. 6.
    Borrow, P., H. Lewicki, X. Wei, M. S. Horwitz, N. Peffer, H. Meyers, J.A. Nelson, J.E. Gairin, B.H. Hahn, M.B. Oldstone and G. M. Shaw (1997), Antiviral pressure exerted by HIV-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus, Nature. Medicine, 3.Google Scholar
  7. 7.
    De Boer, R. J. and A. S. Perelson (1998), Target cell limited and immune control models of HIV infection: a comparison, J. Theor. Biol., 190.Google Scholar
  8. 8.
    De Boer, R. J. and M. C. B. Boerlijst (1994), Diversity and virulence thresholds in AIDS, Proc. Nat. Acad. Sci. USA, 91.Google Scholar
  9. 9.
    Fenyo, E. M. (1994), Antigenic variation of primate lentiviruses in humans and experimentally infected macaques, Immunol. Rev., 140.Google Scholar
  10. 10.
    Hahn, B. H., G. M. Shaw, M. E. Taylor, R. R. Redfield, P. D. Markham, S. Z. Salahuddin, F. Wong-Staal, R. C. Gallo, E. S. Parks and W. P. Parks (1986), Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS, Science, 232.Google Scholar
  11. 11.
    Ho, D.D., A.U. Neumann, A.S. Perelson, W. Chen, J.M. Leonard and M. Markowitz (1995), Rapid turnover of plasma virions and CO4 lymphocytes in HIV-1 infection, Nature, 373.Google Scholar
  12. 12.
    Holmes, E. C., L. Q. Zhang, P. Simmonds, C. A. Ludlam and A. J. Leigh Brown (1992), Convergent and divergent sequence evolution in the surface envelope glycoprotein of HIV-1 within a single infected patient, Proc. Natl. Acad. Sci. USA, 89.Google Scholar
  13. 13.
    Iwasa, Y., Michor, F., Nowak, M.A., 2004. Some basic properties of immune selection, J. Theor. Biol., 229.Google Scholar
  14. 14.
    McLean, A. R., M. A. Nowak (1992), Interactions between HIV and other pathogens, J. Theor. Biol., 155.Google Scholar
  15. 15.
    McMichael, A. J. and R. E. Phillips (1997), Escape of human immunodeficiency virus from immune control, Ann. Rev. Immunol., 15.Google Scholar
  16. 16.
    Nowak, M. A. and C. R. M. Bangham, (1996), Population dynamics of immune responses to persistent viruses, Science, 272.Google Scholar
  17. 17.
    Nowak, M. A., May, R. M., Sigmund, K. (1995). Immune-responses against multiple epitopes, J. Theor. Biol., 175.Google Scholar
  18. 18.
    Nowak, M. A., R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May (1991), Antigenic diversity thresholds and the development of AIDS, Science, 254.Google Scholar
  19. 19.
    Nowak, M.A., R. May, (2000), Virus Dynamics, Oxford.Google Scholar
  20. 20.
    Nowak, M.A., R.M. May, R.M. Anderson (1990), The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease, AIDS, 4.Google Scholar
  21. 21.
    Perelson, A. S. (1989), Modeling the interaction of HIV with the immune system. In Mathematical and Statistical Approaches to AIDS Epidemiology, C. Castillo-Chavez, ed., Lect. Notes in Biomath. 83, Springer-Verlag, New York.Google Scholar
  22. 22.
    Perelson, A. S. and G. Weisbuch (1997), Immunology for physicists. Rev. Modern Phys., 69.Google Scholar
  23. 23.
    Perelson, A.S., A.U. Neumann, M. Markowitz, J.M. Leonard and D.D. Ho (1996), HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science, 271.Google Scholar
  24. 24.
    Phillips, R.E., S. Rowland-Johnes, D.F. Nixon, F.M. Gotch, J.P. Edwards, A.O. Ogunlesi, J.G. Elvin, J.A. Rothbard, D.R.M. Bangham, C.R. Rizza and A.J. McMichael (1991), Human-immunodeficiency-virus genetic-variation that can escape cytotoxic T-cell recognition, Nature, 354.Google Scholar
  25. 25.
    Regoes R. R., D. Wodarz, M. A. Nowak (1998), Virus dynamics: the effect of target cell limitation and immune responses on virus evolution, J. Theor. Biol., 191.Google Scholar
  26. 26.
    Sasaki, A. (1994), Evolution of antigen drift/switching: continuously evading pathogens, J. Theor. Biol., 168.Google Scholar
  27. 27.
    Wahl, L. M., B. Bittner and M. A. Nowak (2000), Immunological transitions in response to antigenic mutation during viral infection, Int. Immunology, 12.Google Scholar
  28. 28.
    Wei, X., J. M. Decker, S. Wang, H. Hui, J. C. Kappes, W. Xiaoyun, J. F. Salazar, M. G. Salazar, J. M. Kilby, M. S. Saag, N. L. Komarova, M. A. Nowak, B. H. Hahn, P. D. Kwong and G. M. Shaw (2003), Antibody neutralization and escape by HIV-1, Nature, 422.Google Scholar
  29. 29.
    Wodarz, D., Lloyd, A. L., Jansen, V. A. A., Nowak, M. A. (1999). Dynamics of macrophage and T-cell infection by HIV, J. Theor. Biol., 196.Google Scholar
  30. 30.
    Wodarz, D., Nowak, M. A. (2000), CD8 memory, immunodominance and antigenic escape, Eur. J. Immunol., 30.Google Scholar
  31. 31.
    Wolinsky, S. M., Korber, B.T.M., Neumann, A.U., Daniels, M., Kunstman, K.J., Whetsell, A.J., Furtado, M.R., Cao, Y.Z., Ho, D.D., Safrit, J.T. and Koup, R.A. (1996). Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection, Science, 272.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yoh Iwasa
    • 1
  • Franziska Michor
    • 2
  • Martin Nowak
    • 2
  1. 1.Department of Biology, Faculty of SciencesKyushu UniversityJapan
  2. 2.Program in Evolutionary DynamicsHarvard UniversityUSA

Personalised recommendations