Advertisement

An Adaptive Operator Splitting of Higher Order for the Navier-Stokes Equations

  • Jörg Frochte
  • Wilhelm Heinrichs
Conference paper

Abstract

This article presents an operator splitting for solving the time-dependent incompressible Navier-Stokes equations with Finite Elements. By using a postprocessing step the splitting method shows a reduction factor higher than second order. In this algorithm a gradient recovery technique is used to compute boundary conditions for the pressure and to achieve a higher convergence order for the gradient at different points of the algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frochte, J.: Ein Splitting-Algorithmus höherer Ordnung für die Navier-Stokes- Gleichung auf der Basis der Finite-Element-Methode [Diss./Phd-Thesis], Universit ät Duisburg-Essen (published in Dec. 2005)Google Scholar
  2. 2.
    Haschke, H., Heinrichs, W.: Splitting techniques with staggered grids for the Navier-Stokes equations in the 2d case, J. of Comp. Phys., 168, 131–154 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Heinrichs, W.: Splitting techniques for the unsteady Stokes equations, SIAM J. Numer. Anal., 35, 1646–1662 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    John, V., Matthies, G.: Higher order Finite Element discretizations in a benchmark problem for the 3D Navier Stokes equations, Int. J. for Num. Methods in Fluid Mechanics, 40, 775–798 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, Int. J. for Num. Methods in Fluids, 44, 777–788 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Schäfer, M., Turek, S.: The benchmark problem ‘flow around a cylinder’. In: Hirchel EH (ed.) Notes on Num. Fluid Mechanics. Vieweg Verlag Braunschweig, (1996)Google Scholar
  7. 7.
    Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates, Int. J. Num. Meth. Engrg., 33, 1331–1382 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jörg Frochte
    • 1
  • Wilhelm Heinrichs
    • 2
  1. 1.Arbeitsgruppe IngeneurmathematikUniversität Duisburg-Essen Campus EssenEssen
  2. 2.Arbeitsgruppe IngeneurmathematikUniversität Duisburg-Essen Campus EssenEssen

Personalised recommendations