Kohlenhydrate II: Polysaccharide und Polysacchariddrogen

  • S. Alban
  • W. Blaschek

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alban S (1997) Chapter 6: Carbohydrates with anticoagulant and an tithrombotic properties. In: Witczak ZJ, Nieforth KA (Hrsg) Carbohydrates in Drug Design. Marcel Dekker, New York, S 209–276Google Scholar
  2. Aventis Crop Science Deutschland, Bund für Lebensmittelrecht und Lebensmittelkunde (BLL), Monsanto Agrar Deutschland (2000) Kompendium Gentechnologie und Lebensmittel. 5. Anwendungsbeispiele — Transgene Pflanzen und Lebensmittel. 3. Aufl. Warlich Druck und Verlags-GmbH, Meckenheim, S 89–100Google Scholar
  3. Aventis Crop Science Deutschland, Bund für Lebensmittelrecht und Lebensmittelkunde (BLL), Monsanto Agrar Deutschland (2000) Kompendium Gentechnologie und Lebensmittel. 4. Zahlen und Fakten — Züchtungsziele, Feldversuche und Zulassungen. 3. Aufl. Warlich Druck und Verlags-GmbH, Meckenheim, S 25–52Google Scholar
  4. Baum CL, Arpey CJ (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 31:674–686PubMedCrossRefGoogle Scholar
  5. Becker A, Katzen F, Pühler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50: 145–152CrossRefPubMedGoogle Scholar
  6. BeMiller JN (2001) Chapter 6.1: Occurrence and significance. In: Fraser-Reid B, Tatsuta K, Thiem J (Hrsg) Glycoscience III. Chemistry and Chemical Biology. Springer, Berlin Heidelberg, S 1865–1881Google Scholar
  7. Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active foward this class of polysaccharide. Glycobiol 13: 29R–40RCrossRefGoogle Scholar
  8. Boldt J (1998) Volumenersatz beim schwerkranken Intensivpatienten. Anaesthesist 47: 778–785CrossRefPubMedGoogle Scholar
  9. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME (1999) Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 221: 281–293CrossRefPubMedGoogle Scholar
  10. Burchard W (1991) Physikalisch-chemische Eigenschaften von Polysacchariden. In: Franz G (Hrsg) Polysaccharide. Springer, Berlin, Heidelberg, S 49–81Google Scholar
  11. Cannon RD, Chaffin WL (1999) Oral colonization by Candida albicans. Crit Rev Oral Biol Med 10: 359–383PubMedCrossRefGoogle Scholar
  12. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed 12: 267–281CrossRefPubMedGoogle Scholar
  13. Chihara G (1981) The antitumor polysaccharide Lentinan: an overview. In: Aoki T et al. (Hrsg) Manipulation of host defence mechanisms. Excerpta Med, Int Congr Ser 576. Elsevier, AmsterdamGoogle Scholar
  14. Chu KK, Ho SS, Chow AH (2002) Coriolus versicolor: a medicinal mushroom with promising immunotherapeutic values. J Clin Pharmacol 42: 976–984PubMedGoogle Scholar
  15. Classen B, Blaschek W (1998) High molecular weight acidic polysaccharides from Malva sylvestris and Alcea rosea. Planta Med 64: 640–644PubMedGoogle Scholar
  16. Dunn GP, Bruce AT, Ikeda H, Old LO, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol 3: 991–998CrossRefGoogle Scholar
  17. Endreß H-E (2002) News from R-D. Dietary fibres — Definitions and applications from a technological and nutritional point of view. http: //www.herbafood.de/e/forschung-und-entwicklung/pdf/forscho1_e.pdfGoogle Scholar
  18. Esko J (1999) Biosynthesis, metabolism, and function. 21. Bacterial Polysaccharides. In: Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (Hrsg) Essentials of Glycobiology. Consortium of Glycobiology Editors, La Jolla, California, S 321–331Google Scholar
  19. Fasse E, Zieseniß E, Bässler D (2005) Trockener Reizhusten bei Kindern — eine Anwendungsbeobachtung mit Eibisch-Sirup. päd — Praktische Pädiatrie 11: 3–8Google Scholar
  20. Franz G, Alban S, Kraus J (1995) Novel pharmaceutical applications of polysaccharides. Macromol Symp 99: 187–200Google Scholar
  21. Froböse R (2003) Kleines Kaliber mit großer Bedeutung. BioTec 9–10: 28–30Google Scholar
  22. Frohne D (2002) Farfarae folium. In: Wichtl M (Hrsg) Teedrogen und Phytotherapie. 4. Aufl. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 208–211Google Scholar
  23. Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20: 177–211PubMedGoogle Scholar
  24. Gordon M, Deeks S, De Marzo C, Goodgame J, Guralnik M, Lang W, Mimura T, Pearce D, Kaneko Y (1997) Curdlan sulfate (CRDS) in a 21-day intravenous tolerance study in human immunodeficiency virus (HIV) and cytomegalovirus (CMV) infected patients: indication of anti-CMV activity with low toxicity. J Med 28: 108–128PubMedGoogle Scholar
  25. Hamuro J, Chihara G (1985) Lentinan, a T-cell oriented immunopotentiator: its experimental and clinical applications and possible mechanism of immune modulation. In: Fenichel RL, Chirigos MA (Hrsg) Immunomodulation agents and their mechanisms. Marcel Dekker, New York, pp 409–436Google Scholar
  26. Harada T (1992) The story of research into curdlan and the bacteria producing it. Trends Glycosci Glycotechnol 4: 308–317Google Scholar
  27. Harnischfeger G (2004) Acacia. In: Blaschek W, Ebel S, Hackenthal E, Holzgrabe U, Keller K, Reichling J, Scholz V (Hrsg) Hager ROM 2004. Hagers Handbuch der Drogen und Arzneistoffe. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  28. Hensel A, Hose S (2001) Indische Flohsamenschalen. Eine alte Droge für moderne Zivilisationserkrankungen. Dtsch Apoth Ztg 141: 4161–4169Google Scholar
  29. Heyn G (2005) Chronische Wunden — Wundheilung nach Maß. Pharm Ztg 150: 2516–2522Google Scholar
  30. Hiller E, Riess H (2002) Hämorrhagsiche Diathese und Thrombose. Grundlagen, Klinik, Therapie. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  31. Holst O, Ulmer AJ, Brade H, Flad HD, Rietschel ET (1996) Biochemistry and cell biology of bacterial endotoxins. FEMS Immunol Med Microbiol 16: 83–104CrossRefPubMedGoogle Scholar
  32. Ichim CV (2005) Revisiting immunosurveillance and immunostimulation: Implications for cancer immunotherapy. J Transl Med 3: 8 [http: //www.translational-medicine.com/content/3/1/8]CrossRefPubMedGoogle Scholar
  33. Jensen A (1995) Production of alginate. In: Wiessner W, Schnepf E, Starr RC (eds) Algae, environment and human affairs. Biopress, Bristol, pp 79–92Google Scholar
  34. Kennedy EP (1996) Membrane-derived oligosaccharides (periplasmic β-D-glucans) of Escherichia coli. In: Neidhardt FC et al. (ed) Escherichia coli and Salmonella: Cellular and molecular biology. 2nd edn. American Society for Microbiology, Washington DC, pp 1064–1071Google Scholar
  35. Kidd PM (2000) The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev 5: 4–27PubMedGoogle Scholar
  36. Koch H, Röper H (1991) Stärke. In: Franz G (Hrsg) Polysaccharide. Springer, Berlin Heidelberg New York Tokio, S 177–198Google Scholar
  37. Kohler P (2000a) Volumenersatz im Notfall — (k)ein Ende der Kontroverse? HAES-infu 12: 4–7Google Scholar
  38. Kohler P (2000b) Wechselspiel von Substitutionsgrad und-muster. HAES-infu 12: 8Google Scholar
  39. Kraft K (2005) Flohsamen (Psylli semen) — Indische Flohsamen/-schalen (Plantaginis ovatae semen/testa). In: Bühring M, Kemper FH (Hrsg) Naturheilverfahren. Springer, Berlin Heidelberg New York Tokio, S 1–16 (Folgelieferung Januar 2005)Google Scholar
  40. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62: 468–473CrossRefPubMedGoogle Scholar
  41. Lindahl U, Li J-P, Kusche-Gullberg M et al. (2005) Generation of „neoheparin“ from E. coli K5 capsular polysaccharide. J Med Chem 48: 349–352CrossRefPubMedGoogle Scholar
  42. Marburger A (2003) Alginate und Carrageenane — Eigenschaften, Gewinnung und Anwendungen in Schule und Hochschule. Dissertation, Universität MarburgGoogle Scholar
  43. Masuoka J (2004) Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 17: 281–310CrossRefPubMedGoogle Scholar
  44. McHugh DJ (1991) Seaweed resources. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221: 19–29CrossRefGoogle Scholar
  45. McLean E, Craig St, Schwartz M (2002) Macrophyte biotechnology: a brief review of production methods and industrial application of seaweed products. [http://www.fw.vt.edu/fisheries/Aquaculture_Center/Power_Point_Presentations/FIW%204514/Lecture%208.1%20-%20macrophyte%20aquaculture/seaweed.pdf]Google Scholar
  46. Mehvar R (2003) Recent trends in the use of polysaccharides for improved delivery of therapeutic agents: pharmacokinetic and pharmacodynamic perspectives. Curr Pharm Biotechnol 4: 283–302CrossRefPubMedGoogle Scholar
  47. Moreyra AE, Wilson AC, Koraym A (2005) Effect of combining psyllium fiber with simvastatin in lowering cholesterol. Arch Intern Med 165: 1161–1166CrossRefPubMedGoogle Scholar
  48. Nimrichter L, Rodrigues ML, Rodrigues EG, Travassos LR (2005) The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes Infect 7: 789–798PubMedGoogle Scholar
  49. Nishimura S (2001) General Aspects. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience III. Chemistry and Chemical Biology. Springer, Berlin Heidelberg New York Tokio, pp 1993–2004Google Scholar
  50. Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7: 715–729PubMedGoogle Scholar
  51. Plank J (2004) Applications of biopolymers and other biotechnol ogical products in building materials. Appl Microbiol Biotechnol 66: 1–9CrossRefPubMedGoogle Scholar
  52. Poulain D, Jouault T (2004) Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr Opin Microbiol 7: 342–349CrossRefPubMedGoogle Scholar
  53. Raetz CRH (1996) Bacterial lipopolysaccharides: A remarkable family of bioactive macromolecules. In: Neidhardt FC et al. (eds) Escherichia coli and Salmonella: Cellular and molecular biology. 2nd edn. American Society for Microbiology, Washington DC, pp 1035–1063Google Scholar
  54. Rinaudo M (2004) Role of substituents on the properties of some polysaccharide. Biomacromol 5: 1155–1165CrossRefGoogle Scholar
  55. Robyt JF (1998) Essentials of Carbohydrate Chemistry: Microbial Polysaccharides. Springer, Berlin Heidelberg New York Tokio, pp 194–197Google Scholar
  56. Saito H, Yoshioka Y, Yokoi M, Yamada J (1991) Distinct gelation mechanism between linear and branched (1–3)-beta-D-glucans as revealed by high resolution solid state 13C NMR. Biopolymers 19: 1689–1698Google Scholar
  57. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16: 41–46CrossRefPubMedGoogle Scholar
  58. Trappe U, Riess H (2005) Basics in the pathophysiology of sepsis. Hamostaseologie 25: 175–182PubMedGoogle Scholar
  59. Van Rosendaal GM, Shaffer EA, Edward AL, Brant R (2004) Effect of time administration on cholesterol-lowering by psyllium: a randomized cross-over study in normocholesterolemic or slightly hypercholesterolemic subjects. Nutr J 28: 3–17Google Scholar
  60. Volk R (2004) Porträt einer Arzneipflanze: Tang (Fucus). Zeitschrift für Phytotherapie 25: 46–54Google Scholar
  61. Walter T (1998) Oligofructose, Inulin und Zuckeralkohole als Bestandteil von von funktionellen Lebensmitteln. In: Buckenhüskes H (Hrsg) Functional Food. GDL Eigenverlag, BonnGoogle Scholar
  62. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60: 258–274CrossRefPubMedGoogle Scholar
  63. Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in Higher Basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1: 31–62Google Scholar
  64. Whistler RL, BeMiller JN (1993) Industrial Gums. Polysaccharides and Their Derivatives. 3. Aufl. Academic Press, San Diego New York Boston London Sydney Tokyo TorontoGoogle Scholar
  65. Wyckoff TJ, Raetz CR, Jackman JE (1998) Antibacterial and anti-in-flammatory agents that target endotoxin. Trends Microbiol 6: 154–159CrossRefPubMedGoogle Scholar
  66. Zhou YL, Yang QY (1999) Active principles from Coriolus sp. In: Yang QY (ed) Advanced Research in PSP. Hong Kong: Hong Kong Association for Health Care, pp 111–124Google Scholar

Weiterführende Literatur

  1. Blaschek W, Ebel S, Hackenthal E, Holzgrabe U, Keller K, Reichling J, Scholz V (Hrsg) Hagers Handbuch der Drogen und Arzneistoffe (2004) HagerRom 2004. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  2. Dey PM, Harborne JB (1997) Plant biochemistry. Academic Press, London New York TorontoGoogle Scholar
  3. ESCOP Monographs (2003) 2nd edition. Thieme, StuttgartGoogle Scholar
  4. Franz G (1991) Polysaccharide. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  5. Fraser-Reid B, Tatsuta K, Thiem J (eds) (2001) Glycoscience: Chemistry and Chemical Biology. III. Volume 6 Complex Polysaccharides. Springer, Berlin Heidelberg New York Tokio, pp 1865–2080Google Scholar
  6. Hahn A, Ströhle A, Wolters M (2005) Ernährung — Physiologische Grundlagen, Prävention, Therapie. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  7. Hartke K, Harkte H, Mutschler E, Rücker G, Wichtl M (Hrsg) (2005) Arzneibuch-Kommentar. Wissenschaftliche Erläuterungen zum Europäischen Arzneibuch und zum Deutschen Arzneibuch. 20. Lieferung. Wissenschaftliche Verlagsgesellschaft, Stuttgart und Govi-Verlag, EschbornGoogle Scholar
  8. Kasper H (2004) Ernährungsmedizin und Diätetik. Urban & Fischer, München, JenaGoogle Scholar
  9. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry, Wiley-VCHGoogle Scholar
  10. Kooperation Phytopharmaka (Hrsg) (1995) Arzneipflanzen in der Phytotherapie. Indikationsgegliedertes Kompendium von Arzneipfl anzen gemäß Monographien der Kommission E mit Darstellung von Kombinationsmöglichkeiten. Krahe Druck, UnkelGoogle Scholar
  11. Lehmann J (1996) Kohlenhydrate, Chemie und Biologie. Thieme, Stuttgart New YorkGoogle Scholar
  12. Lichtenthaler FW (1991) Carbohydrates as organic raw materials. VCH, WeinheimGoogle Scholar
  13. Müller RH, Hildebrand GE (1998) Pharmazeutische Technologie: Moderne Arzneiformen, 2. Aufl. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  14. Nuhn P (1997) Naturstoffchemie: Mikrobielle, pflanzliche und tierische Naturstoffe. 3. Aufl. S. Hirzel, Stuttgart LeipzigGoogle Scholar
  15. Reuter P (2004) Springer Lexikon Medizin. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  16. Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  17. Schulz V, Hänsel R (2004) Rationale Phytotherapie. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  18. Stephen AM (1995) Food polysaccharides and their applications. 3. Aufl. Marcel Dekker, New York Basel Hong KongGoogle Scholar
  19. Strasburger E, von Denffer D, Ziegler H, Ehrendorfer F, Bresinsky A (2005) Lehrbuch der Botanik. 36. Aufl. Gustav Fischer, Stuttgart New YorkGoogle Scholar
  20. Stryer L (1996) Biochemie, 4. Aufl. Spektrum Akademischer Verlag, Heidelberg Berlin OxfordGoogle Scholar
  21. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (eds) (1999) Essentials of glycobiology. Consortium of Glycobiology Editors, La Jolla, CaliforniaGoogle Scholar
  22. Wichtl M (Hrsg) (2002) Teedrogen und Phytotherapie. 4. Aufl. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 208–211Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2007

Authors and Affiliations

  • S. Alban
    • 1
  • W. Blaschek
    • 2
  1. 1.Pharmazeutisches Institut, Abteilung Pharmazeutische BiologieChristian-Albrechts-Universität zu KielKiel
  2. 2.Pharmazeutisches Institut, Lehrstuhl für Pharmazeutische BiologieChristian-Albrechts-Universität zu KielKiel

Personalised recommendations