A Low-Numerical Dissipation, Patch-Based Adaptive-Mesh-Refinement Method for Large-Eddy Simulation of Compressible Flows

  • C. Pantano
  • R. Deiterding
  • D. J. Hill
  • D. I. Pullin
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 56)


This paper presents a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described. An explicit centered scheme is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Several two- and three-dimensional numerical experiments and validation calculations are presented including homogeneous shock-free turbulence, turbulent jets and the strongly shockdriven mixing of a Richtmyer-Meshkov instability.


Adaptive Mesh WENO Scheme Compressible Turbulence Mesh Interface Mesh Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial-Differential equations. J. Comp. Phys., 53(3):484–512, 1984.zbMATHCrossRefGoogle Scholar
  2. [2]
    M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys., 82(1):64–84, 1989.zbMATHCrossRefGoogle Scholar
  3. [3]
    P. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure and Appl. Math., 13(2):217–237, 1960.zbMATHCrossRefGoogle Scholar
  4. [4]
    T.A. Zang. On the rotation and skew-symmetric forms for incompressible flow simulation. Appl. Numer. Math., 7(1):27–40, 1991.zbMATHCrossRefGoogle Scholar
  5. [5]
    R. Deiterding. Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universität Cottbus, 2003.Google Scholar
  6. [6]
    D.J. Hill and D.I. Pullin. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comp. Phys., 194(2):435–450, 2004.zbMATHCrossRefGoogle Scholar
  7. [7]
    A. Misra and D.I. Pullin. A vortex-based subgrid model for large-eddy simulation. Phys. Fluids, 9(8):2443–2454, 1997.CrossRefGoogle Scholar
  8. [8]
    D.I. Pullin. Vortex-based model for subgrid flux of a passive scalar. Phys. Fluids, 12(9):2311–2319, 2000.CrossRefGoogle Scholar
  9. [9]
    A.E. Honein and P. Moin. Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comp. Phys., 201(2):531–545, 2004.zbMATHCrossRefGoogle Scholar
  10. [10]
    Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin. Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys., 143(1):90–124, 1998.zbMATHCrossRefGoogle Scholar
  11. [11]
    F. Ducros, F. Laporte, T. Souleres, V. Guinot, P. Moinat, and B. Caruelle. High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows. J. Comp. Phys., 161(1):114–139, 2000.zbMATHCrossRefGoogle Scholar
  12. [12]
    A. Benkenida, J. Bohbot, and J.C. Jouhaud. Patched grid and adaptive mesh refinement strategies for the calculation of the transport of vortices. Int. J. Numer. Meth. Fluids, 40:855–873, 2002.zbMATHCrossRefGoogle Scholar
  13. [13]
    G.-S. Jiang and C.-W. Shu. Effcient implementation of weighted ENO schemes. J. Comp. Phys., 126(1):202–228, 1996.zbMATHCrossRefGoogle Scholar
  14. [14]
    D.S. Balsara and C.W. Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing high order of accuracy. J. Comp. Phys., 160(2):405–452, 2000.zbMATHCrossRefGoogle Scholar
  15. [15]
    E. Gutmark and I. Wygnanski. The planar turbulent jet. J. Fluid Mech., 73(3):465–495, 1976.CrossRefGoogle Scholar
  16. [16]
    M. Vetter and B. Sturtevant. Experiments on the Richtmyer-Meshkov instability on a air/SF6 interface. Shock Waves, 4(5):247–252, 1995.CrossRefGoogle Scholar
  17. [17]
    J.E. Rehm and N.T. Clemens. The large-scale turbulent structure of nonpremixed planar jet flames. Combustion and Flame, 116(4):615–626, 1999.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. Pantano
    • 1
  • R. Deiterding
    • 2
  • D. J. Hill
    • 1
  • D. I. Pullin
    • 1
  1. 1.Graduate Aeronautical LaboratoriesPasadena
  2. 2.Applied and Computational MathematicsCalifornia Institute of TechnologyPasadena

Personalised recommendations