Immunohistochemical Studies

  • U. Rolle
  • P. Puri


Several diagnostic methods are necessary in the examination of patients in whom Hirschsprung’s disease (HD) is suspected. These are clinical examination, contrast enema, anorectal manometry and rectal biopsy. It has been shown that rectal suction biopsies (RSB) have the highest sensitivity (93%) and specificity (100%) rates in diagnosing HD.


Ganglion Cell Enteric Nervous System Neural Cell Adhesion Molecule Myenteric Plexus Pituitary Adenylate Cyclase Activate Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Lorjin F, Reitsma JB, Voskuijl WP, Aronson DC, Ten Kate FJ, Smets AMJB, Taminiau JAJM, Benninga MA (2005) Diagnosis of Hirschsprung’s disease: a prospective, comparative accuracy study of common tests. J Pediatr 146:787–792Google Scholar
  2. 2.
    Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219–221PubMedGoogle Scholar
  3. 3.
    Lake BD, Puri P, Nixon HH, Claireaux AE (1978) Hirschsprung’s disease. An appraisal of histochemically demonstrated acetylcholinesterase activity in suction rectal biopsy specimens as an aid to diagnosis. Arch Pathol Lab Med 102:244–247PubMedGoogle Scholar
  4. 4.
    Athow AC, Filipe MI, Drake DP (1990) Problems and advantages of acetylcholinesterase histochemistry of rectal suction biopsies in the diagnosis of Hirschsprung’s disease. J Pediatr Surg 25:520–526PubMedGoogle Scholar
  5. 5.
    Moore SW, Johnson G (2005) Acetylcholinesterase in Hirschsprung’s disease. Pediatr Surg Int 21:255–263PubMedGoogle Scholar
  6. 6.
    Marangos PJ, Zomzely-Neurath C, York C (1975) Immunological studies of a nerve specific protein. Arch Biochem Biophys 170:289–293PubMedGoogle Scholar
  7. 7.
    Pickel VM, Reis DJ, Marangos PJ, Zomzely-Neurath C (1976) Immunocytochemical localization of nervous system specific protein (NSP-R) in rat brain. Brain Res 105:184–187PubMedGoogle Scholar
  8. 8.
    Marangos PJ (1987) Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 10:269–295PubMedGoogle Scholar
  9. 9.
    Hall CL, Lampert PW (1985) Immunohistochemistry as an aid in the diagnosis of Hirschsprung’s disease. Am J Clin Pathol 83:177–181PubMedGoogle Scholar
  10. 10.
    Barshack I, Fridman E, Goldberg I, Chowers Y, Kopolovic J (2004) The loss of calretinin expression indicates aganglionosis in Hirschsprung’s disease. J Clin Pathol 57:712–716PubMedGoogle Scholar
  11. 11.
    Vinores SA, May E (1985) Neuron-specific enolase as an immunohistochemical tool for the diagnosis of Hirschsprung’s disease. Am J Surg Pathol 9:281–285PubMedGoogle Scholar
  12. 12.
    Sams VR, Bobrow LG, Happerfield L, Keeling J (1992) Evaluation of PGP9.5 in the diagnosis of Hirschsprung’s disease. J Pathol 168:55–58PubMedGoogle Scholar
  13. 13.
    Dzienis-Koronkiewicz E, Debek W, Sulkowska M, Chyczewski L (2002) Suitability of selected markers for identification of elements of the intestinal nervous system (INS). Eur J Pediatr Surg 12:397–401PubMedGoogle Scholar
  14. 14.
    Petchasuwan C, Pintong J (2000) Immunohistochemistry for intestinal ganglion cells and nerve fibres: aid in the diagnosis of Hirschsprung’s disease. J Med Assoc Thai 83:1402–1409PubMedGoogle Scholar
  15. 15.
    Oh JT, Han A, Yang WI, Han SJ, Choi SH, Hwang EH (2002) Morphometric evaluation of PGP9.5 and NCAM expressing nerve fibres in colonic muscle of patients with Hirschsprung’s disease. Yonsei Med J 43:31–36PubMedGoogle Scholar
  16. 16.
    Watanabe Y, Ito F, Ando H, Seo T, Kaneko K, Harada T, Iino S (1999) Morphological investigation of the enteric nervous system in Hirschsprung’s disease and hypogan­glionosis using whole-mount colon preparation. J Pediatr Surg 34:445–449PubMedGoogle Scholar
  17. 17.
    Kirschke H, Wiederanders B (1987) Lysosomal proteinases. Acta Histochem 82:2–4PubMedGoogle Scholar
  18. 18.
    Abu-Alfa AK, Kuan SF, West AB, Reyes-Mugica M (1997) Cathepsin D in intestinal ganglion cells: a potential aid to diagnosis in suspected Hirschsprung’s disease. Am J Surg Pathol 21:201–205PubMedGoogle Scholar
  19. 19.
    Vannucchi MG, Midrio P, Zardo C, Faussone-Pellegrini (2004) Neurofilament formation and synaptic activity are delayed in the myenteric neurons of the rat fetus with gastroschisis. Neurosci Lett 364:81–85PubMedGoogle Scholar
  20. 20.
    Dahl D (1988) Early and late appearance of neurofilament phosphorylated epitopes in rat nervous system development: in vivo and in vitro study with monoclonal antibodies. J Neurosci Res 20:431–441PubMedGoogle Scholar
  21. 21.
    Tohyama T, Lee VMY, Rorke LB, et al (1991) Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. J Comp Neurol 310:1–15Google Scholar
  22. 22.
    Kluck P, van Muijen GN, van der Kamp AW, Tibboel D, van Hoorn WA, Warnaar SO, Molenaar JC (1984) Hirschsprung’s disease studied with monoclonal antineurofilament antibodies on tissue sections. Lancet 24:642–654Google Scholar
  23. 23.
    Luider TM, van Dommelen MW, Tibboel D, Meijers JHC, Ten Kate FJW, Trojanowski JQ, et al (1992) Differences in phosphorylation state of neurofilament proteins in gan­glionic and aganglionic bowel segments of children with Hirschsprung’s disease. J Pediatr Surg 27:815–819PubMedGoogle Scholar
  24. 24.
    Deguchi E, Iwai N, Goto Y, Yanagihara J, Fushiki S (1993) An immunohistochemical study of neurofilament and microtubule-associated Tau protein in the enteric innervation in Hirschsprung’s disease. J Pediatr Surg 28:886–890PubMedGoogle Scholar
  25. 25.
    Gorham JD, Baker H, Kegler D, Ziff EB (1990) The expression of the neuronal intermediate filament protein peripherin in the rat embryo. Dev Brain Res 57:235–248Google Scholar
  26. 26.
    Solari V, Piaseczna Piotrowska A, Puri P (2003) Histopathological differences between recto-sigmoid Hirschsprung’s disease and total colonic aganglionosis. Pediatr Surg Int 19:349–354PubMedGoogle Scholar
  27. 27.
    Tam PKH, Boyd GP (1990) Origin, course, and endings of abnormal enteric nerve fibres in Hirschsprung’s disease defined by whole-mount immunohistochemistry. J Pediatr Surg 25:457–461PubMedGoogle Scholar
  28. 28.
    Faussone-Pellegrini MS, Matini P, DeFelici M (1999) The cytoskeleton of the myenteric neurons during murine embryonic life. Anat Embryol 199:459–469PubMedGoogle Scholar
  29. 29.
    Tam PK, Owen G (1993) An Immunohistochemical study of neuronal microtubule-associated proteins in Hirschsprung’s disease. Hum Pathol 24:424–431PubMedGoogle Scholar
  30. 30.
    Wattchow DA, Porter AJ, Brookes SJ, et al (1997) The polarity of neurochemically defined myenteric neurons in the human colon. Gastroenterology 113:487–506Google Scholar
  31. 31.
    Eledman GM (1985) Cell adhesion and the molecular processes of morphogenesis. Am Rev Biochem 54:135–169Google Scholar
  32. 32.
    Tosney KW, Watanabe M, Landmesser L, et al (1986) The distribution of NCAM in the chick hind limb during axon outgrowth and synaptogenesis. Dev Biol 114:437–452PubMedGoogle Scholar
  33. 33.
    Kobayashi H, O’Briain DS, Puri P (1994) Lack of expression of NADPH-diaphorase and neural cells adhesion molecule (NCAM) in colonic muscle of patients with Hirschsprung’s disease. J Pediatr Surg 29:301–304PubMedGoogle Scholar
  34. 34.
    Kobayashi H, Hirikawa H, Puri P (1996) Abnormal internal anal sphincter innervation in patients with Hirschsprung’s disease and allied disorders. J Pediatr Surg 31:794–799PubMedGoogle Scholar
  35. 35.
    Nogueira A, Campos M, Soares-Oliveira M, Estevao-Costa J, Silva P, Carneiro F, Carvalho JL (2001) Histochemical and immunohistochemical study of the intrinsic innervation in colonic dysganglionosis. Pediatr Surg Int 17:144–151PubMedGoogle Scholar
  36. 36.
    Doi T, Kobayashi H, Yamataka A, Lane GF, Miyano T (2005) Complete innervation profile of whole bowel resected at pull-through for Hirschsprung’s disease. Unexpected findings. Pediatr Surg Int 21:889–898PubMedGoogle Scholar
  37. 37.
    Barde YA, Edgar D, Thoenen H (1980) Sensory neurons in culture: changing requirements for survival factors during development. Proc Natl Acad Sci U S A 77:1199–1204PubMedGoogle Scholar
  38. 38.
    Barde YA (1989) Trophic factors and neuronal survival. Neuron 2:1525–1534PubMedGoogle Scholar
  39. 39.
    Hefti F, Hartikka J, Salvatierra A, et al (1986) Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci Lett 69:37–41PubMedGoogle Scholar
  40. 40.
    Kordower JH, Bartus RT, Bothwell M, et al (1988) Nerve growth factor receptor immunoreactivity in the nonhuman primate (Cebus apella): distribution, morphology, and colocalization with cholinergic enzymes. J Comp Neurol 277:465–486PubMedGoogle Scholar
  41. 41.
    Koliatsos VE, Clatterbuck RE, Nauta HW, et al (1991) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann Neurol 30:831–840PubMedGoogle Scholar
  42. 42.
    Thoenen H, Barde YA (1980) Physiology of nerve growth factor. Phys Rev 60:1284–1335Google Scholar
  43. 43.
    Piaseczna-Piotrowska A, Solari V, Puri P (2003) Distribution of Ca2+-activated K+ channels, SK2 and SK3, in the normal and Hirschsprung’s disease bowel. J Pediatr Surg 36:978–983Google Scholar
  44. 44.
    Park SH, Min H, Chi JG, Park KW, Yang HR, Seo JK (2005) Immunohistochemical studies of pediatric intestinal pseudo-obstruction. Bcl2, a valuable biomarker to detect immature enteric ganglion cells. Am J Surg Pathol 29:1017–1024PubMedGoogle Scholar
  45. 45.
    Debas HT, Mulvihill SJ (1991) Neuroendocrine design of the gut. Am J Surg 161:243–249PubMedGoogle Scholar
  46. 46.
    Isaacs PET, Corbett CL, Riley AK, Hawker PC, Turnberg LA (1976) In vitro behaviour of acetyl choline ion transport. J Clin Invest 58:535–542PubMedGoogle Scholar
  47. 47.
    Mackenzie JM, Dixon MF (1987) An immunohistochemical study of the enteric neural plexi in Hirschsprung’s disease. Histopathology 11:1055–1066PubMedGoogle Scholar
  48. 48.
    Costa M, Furness JB, Llewellyn-Smith IJ (1987) Histochemistry of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1–40Google Scholar
  49. 49.
    Bleys RLA, Groen GJ, Matthijssen MAH (1994) A method for identifying peripheral connections of perivascular nerves based on sensitive acetylcholinesterase staining via perfusion. J Histochem Cytochem 42:223–230PubMedGoogle Scholar
  50. 50.
    Schemann M, Sann H, Schaaf C, Mader M (1993) Identification of cholinergic neurons in enteric nervous system by antibodies against choline acetyltransferase. Am J Physiol 265:G1005–1009PubMedGoogle Scholar
  51. 51.
    Schemann M, Schaaf C, Mader M (1995) Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 353:161–178PubMedGoogle Scholar
  52. 52.
    Mann PT, Furness JB, Pompolo S, Mader M (1995) Chemical coding of neurons that project from different regions of intestine to the coeliac ganglion of the guinea pig. J Autonom Nerv Syst 56:15–25Google Scholar
  53. 53.
    Ratcliffe EM, deSa DJ, Dixon MF, Stead RH (1998) Choline acetyltransferase (ChAT) immunoreactivity in paraffin sections of normal and diseased intestines. J Histochem Cytochem 46:1223–1231PubMedGoogle Scholar
  54. 54.
    Nakajima K, Tooyama I, Yasuhara O, Aimi Y, Kimura H (2000) Immunohistochemical demonstration of choline acetyltransferase of a peripheral type (pChAT) in the enteric nervous system of rats. J Chem Neuroanat 18:31–40PubMedGoogle Scholar
  55. 55.
    Beschorner R, Mittelbronn M, Bekure K, Meyermann R (2004) Problems in fast intraoperative diagnosis in Hirschsprung’s disease. Folia Neuropathol 42:191–195PubMedGoogle Scholar
  56. 56.
    Anlauf M, Schäfer MKH, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111PubMedGoogle Scholar
  57. 57.
    Porter AJ, Wattchow DA, Brookes SJ, Schemann M, Costa M (1996) Choline acetyltransferase immunoreactivity in the human small and large intestine. Gastroenterology 111:401–408PubMedGoogle Scholar
  58. 58.
    Larsson LT, Malmfors G, Ekblad E, Ekman R, Sundler F (1991) NPY hyperinnervation in Hirschsprung’s disease: both adrenergic and nonadrenergic fibers contribute. J Pediatr Surg 26:1207–1214PubMedGoogle Scholar
  59. 59.
    Shen Z, Larsson LT, Malmfors G, Oberg K, Eriksson B, Sundler F (1994) Chromogranin A and B on neuronal elements in Hirschsprung’s disease: an immunocytochemical and radioimmunoassay study. J Pediatr Surg 29:1293–1301PubMedGoogle Scholar
  60. 60.
    Takahashi T (2003) Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol 38:421–430PubMedGoogle Scholar
  61. 61.
    Guo R, Nada O, Suita S, Taguchi T, Masumoto K (1997) The distribution and co-localization of nitric oxide synthase and vasoactive intestinal polypeptide in nerves of the colons with Hirschsprung’s disease. Virchows Arch 430:53–61PubMedGoogle Scholar
  62. 62.
    Vanderwinden JM, De Laet MH, Schiffmann SN, Mailleux P, Lowenstein CJ, Snyder SH, Vanderhaeghen JJ (1993) Nitric oxide synthase distribution in the enteric nervous system of Hirschsprung’s disease. Gastroenterology 105:969–973PubMedGoogle Scholar
  63. 63.
    Bealer JF, Natuzzi ES, Flake AW, Adzick NS, Harrison MR (1994) Effect of nitric oxide on the colonic smooth muscle of patients with Hirschsprung’s disease. J Pediatr Surg 29:1025–1029PubMedGoogle Scholar
  64. 64.
    Hanani M, Louton V, Udassin R, Freund HR, Karmeli F, Rachmilewitz D (1995) Nitric oxide-containing nerves in bowel segments of patients with Hirschsprung’s disease. J Pediatr Surg 30:818–822PubMedGoogle Scholar
  65. 65.
    Tomita R, Munakata K, Kurosu Y, Tanjoh K (1995) A role of nitric oxide in Hirschsprung’s disease. J Pediatr Surg 30:437–440PubMedGoogle Scholar
  66. 66.
    Larsson LT, Shen Z, Ekblad E, Sundler F, Alm P, Andersson KE (1995) Lack of neuronal nitric oxide synthase in nerve fibers of aganglionic intestine: a clue to Hirschsprung’s dis­ease. J Pediatr Gastroenterol Nutr 20:49–53PubMedCrossRefGoogle Scholar
  67. 67.
    Teromata M, Domoto T, Tanigawa K, Yasui Y, Tamura K (1996) Distribution of nitric oxide synthase-containing nerves in the aganglionic intestine of mutant rats: a histochemical study. J Gastroenterol 31:214–223Google Scholar
  68. 68.
    Zakhary R, Poss KD, Jaffrey SR, et al (1997) Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc Natl Acad Sci U S A 94:14848–14853PubMedGoogle Scholar
  69. 69.
    Chen Y, Lui VCH, Sham MH, Tam PKH (2002) Distribution of carbon monoxide-producing neurons in human colon and on Hirschsprung’s disease patients. Hum Pathol 33:1030–1036PubMedGoogle Scholar
  70. 70.
    Masuo Y, Ohtaki T, Masuda Y, Tsuda M, Fujino M (1992) Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res 575:113–123PubMedGoogle Scholar
  71. 71.
    Mungan Z, Arimura A, Ertan A, Rossowski WJ, Coy DH (1992) Pituitary adenylate cyclase-activating polypeptide relaxes rat gastrointestinal smooth muscle. Scand J Gastroenterol 27:375–380PubMedGoogle Scholar
  72. 72.
    Facer P, Knowles CH, Tam PKH, Ford N, Dyer N, Baecker PA, Anand P (2001) Novel capsaicin (VR1) and purinergic (P2X3) receptors in Hirschsprung’s intestine. J Pediatr Surg 36:1679–1684PubMedGoogle Scholar
  73. 73.
    Grider JR, Makhlouf GM (1986) Colonic peristaltic reflex: identification of vasoactive intestinal peptide as mediator of descending relaxation. Am J Physiol 251:G40–G45PubMedGoogle Scholar
  74. 74.
    Domoto T, Bishop AE, Oki M, et al (1990) An in vitro study of the projections of enteric vasoactive intestinal polypeptide-immunoreactive neurons in the human colon. Gastroenterology 98:819–827PubMedGoogle Scholar
  75. 75.
    Faussone-Pellegrini MS, Bacci S, Pantalone D, et al (1993) Distribution of VIP-immunoreactive nerve cells and fibers in the human ileocoecal region. Neurosci Lett 157:135–139PubMedGoogle Scholar
  76. 76.
    Ferri G, Adrian TE, Ghatei MA, et al (1983) Tissue localization and relative distribution of regulatory peptides in separated layers from the human bowel. Gastroenterology 84:777–786PubMedGoogle Scholar
  77. 77.
    Wattchow DA, Brookes SJH, Costa M (1995) The morphology and projections of retrograde labelled myenteric neurons in the human intestine. Gastroenterology 109:866–875PubMedGoogle Scholar
  78. 78.
    Uemura S, Hurley MR, Hutson JM, Chow CW (1998) Distributions of substance P- and VIP-immunoreactive nerve fibres in the colonic circular muscle in children. Pediatr Surg Int 14:66–70PubMedGoogle Scholar
  79. 79.
    Tsuto T, Okamura H, Fukui K, Obata HL, Terubayashi H, Iwai N, Majima S, Yanaihara N, Ibata Y (1982) An immunohistochemical investigation of vasoactive intestinal polypeptide in the colon of patients with Hirschsprung’s disease. Neurosci Lett 34:57–62PubMedGoogle Scholar
  80. 80.
    Tsuto T, Okamura H, Fukui K, Obata-Tsuto HL, Terubayashi H, Yanagihara J, et al (1985) Immunohistochemical investigations of gut hormones in the colon of patients with Hirschsprung’s disease. J Pediatr Surg 20:266–270PubMedGoogle Scholar
  81. 81.
    Larsson LT, Malmfors G, Sundler F (1988) Neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP) and galanin in Hirschsprung’s disease – an immunocytochemical study. J Pediatr Surg 23:342–345PubMedGoogle Scholar
  82. 82.
    Munakata K, Tomita R, Kurosu Y (1997) Preliminary Immunohistochemical new findings in the myenteric plexus of patients with intestinal neuronal dysplasia type B. Eur J Pediatr Surg 7:21–29PubMedCrossRefGoogle Scholar
  83. 83.
    Furness JB, Bornstein JC, Pompolo S, et al (1995) Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology 108:554–563PubMedGoogle Scholar
  84. 84.
    Grider JR (1989) Identification of neurotransmitters regulating intestinal peristaltic reflex in humans. Gastroenterology 97:1414–1419PubMedGoogle Scholar
  85. 85.
    Wattchow DA, Furness JB, Costa M (1988) Distribution and coexistence of peptides in nerve fibres of external muscle of the human gastrointestinal tract. Gastroenterology 95:32–41PubMedGoogle Scholar
  86. 86.
    Larsson LT, Sundler F (1990) Neuronal markers in Hirschsprung’s disease with special reference to neuropeptides. Acta Histochem Suppl 38:115–125PubMedGoogle Scholar
  87. 87.
    Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, EdinburghGoogle Scholar
  88. 88.
    Palmer JM, Schemann M, Tamura K, Wood JD (1986) Calcitonin gene-related peptide excites myenteric neurons. Eur J Pharmacol 132:163–170PubMedGoogle Scholar
  89. 89.
    Bartho L, Lembeck F, Holzer P (1987) Calcitonin gene-related peptide is a potent relaxant of intestinal muscle. Eur J Pharmacol 135:449–451PubMedGoogle Scholar
  90. 90.
    Rasmussen TN, Gregersen H, Harling H, Holst JJ (1992) Calcitonin gene-related peptide: effect on contractile activity and luminal cross-sectional area in the isolated, perfused porcine ileum. Scand J Gastroenterol 27:787–792PubMedGoogle Scholar
  91. 91.
    Grider JR (1994) CGRP as a transmitter in the sensory pathway mediating peristaltic reflex. Am J Physiol 266:G1139–1145PubMedGoogle Scholar
  92. 92.
    Sternini C (1991) Tachykinin and calcitonin gene-related peptide immunoreactivities and mRNAs in the mammalian enteric system and sensory ganglia. Adv Exp Med Biol 298:39–51PubMedGoogle Scholar
  93. 93.
    Rasmussen TN, Schmidt P, Poulsen SS, Holst JJ (2001) Localisation and neural control of the release of calcitonin gene-related peptide (CGRP) from the isolated perfused porcine ileum. Regul Pept 98:137–143PubMedGoogle Scholar
  94. 94.
    Vanner S (1994) Co-release of neuropeptides from capsaicin-sensitive afferents dilates submucosal arterioles in the guinea-pig ileum. Am J Physiol 267:G223–G230Google Scholar
  95. 95.
    Kawasaki H (2002) Regulation of vascular function by perivascular calcitonin gene-related peptide-containing nerves. Jpn J Pharmacol 88:39–43PubMedGoogle Scholar
  96. 96.
    Tache Y (1992) Inhibition of gastric acid secretion and ulcers by calcitonin gene-related peptide. Ann N Y Acad Sci 657:240–247PubMedGoogle Scholar
  97. 97.
    Barada KA, Saade NE, Atweh SF, Khoury CI, Nassar CF (2000) Calcitonin gene-related peptide regulates amino acid absorption across rat jejunum. Regul Pept 90:39–45PubMedGoogle Scholar
  98. 98.
    Ichikawa S, Shiozawa M, Iwanaga T, Uchino S (1991) Immunohistochemical demonstration of peptidergic nerve fibers associated with the central lacteal lymphatics in the duodenal villi of dogs. Arch Histol Cytol 54:241–248PubMedGoogle Scholar
  99. 99.
    Ichikawa S, Dreedharan SP, Goetzl EJ, Owen RL (1994) Immunohistochemical localization of peptidergic receptors in Peyer’s patches of the cat ileum. Regul Pept 54:385–395PubMedGoogle Scholar
  100. 100.
    Chiocchetti R, Grandis A, Bombardi C, Lucchi ML, Dal Lago DT, Bortolami R, Furness JB (2006) Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: a morphometric and neurochemical investigation. Cell Tissue Res 323:183–196PubMedGoogle Scholar
  101. 101.
    Tatemoto K, Carquist M, Mutt M (1982) Neuropeptide Y – novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660PubMedGoogle Scholar
  102. 102.
    Lundberg JM, Terenius L, Hökfelt T, Goldstein M (1983) High level of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neurosci Lett 42:167–172PubMedGoogle Scholar
  103. 103.
    Hamada Y, Bishop AE, Federici G, Rivosecchi M, Talbot IC, Polak JM (1987) Increased neuropeptide Y immunoreactive innervation of aganglionic bowel in Hirschsprung’s disease. Virchows Arch A 411:369–377Google Scholar
  104. 104.
    Koch TR, Roddy DR, Carney JA, Telander RL, Go VL (1988) Distribution, quantitation, and origin of immunoreactive neuropeptide Y in the human gastrointestinal tract. Regul Pept 21:309–319PubMedGoogle Scholar
  105. 105.
    Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V (1983) Galanin – a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128PubMedGoogle Scholar
  106. 106.
    Melander T, Hokfelt T, Rokaeus A, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of several mammalian species. Cell Tissue Res 239:253–260PubMedGoogle Scholar
  107. 107.
    Hoyle CH, Burnstock G (1989) Galanin-like immunoreactivity in enteric neurons of the human colon. J Anat 166:23–33PubMedGoogle Scholar
  108. 108.
    Bauer FE, Adrian TE, Christofides ND, Ferri GL, Yanaihara N, Polak JM, Bloom SR (1986) Distribution and molecular heterogeneity of galanin in human, pig, guinea pig, and rat gastrointestinal tracts. Gastroenterology 91:877–883PubMedGoogle Scholar
  109. 109.
    Melander T, Hokfelt T, Rokaeus A (1986) Distribution of galanin-like immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517PubMedGoogle Scholar
  110. 110.
    Bauer FE, Zintel A, Kenny MJ, Calder D, Ghatei MA, Bloom SR (1989) Inhibitory effect of galanin on postprandial gastrointestinal motility and gut hormone release in humans. Gastroenterology 97:260–264PubMedGoogle Scholar
  111. 111.
    Katsoulis S, Clemens A, Morys-Wortmann C, Schworer H, Schaube H, Klomp HJ, Folsch UR, Schmidt WE (1996) Human galanin modulates human colonic motility in vitro. Characterization of structural requirements. Scand J Gastroenterol 31:446–451PubMedGoogle Scholar
  112. 112.
    King SC, Slater P, Turnberg LA (1989) Autoradiographic localization of binding sites for galanin and VIP in small intestine. Peptides 10:313–317PubMedGoogle Scholar
  113. 113.
    Benya RV, Matkowskyi KA, Danikovich A, Hecht G (1998) Galanin causes Cl-secretion in the human colon. Potential significance of inflammation-associated NF-kappa B activation on galanin-1 receptor expression and function. Ann N Y Acad Sci 863:64–77PubMedGoogle Scholar
  114. 114.
    Homaidan FR, Tang SH, Donowitz M, Sharp GW (1994) Effects of galanin on short circuit current and electrolyte transport in rabbit ileum. Peptides 15:1431–1436PubMedGoogle Scholar
  115. 115.
    Larsson LT (1994) Hirschsprung’s disease – immunohistochemical findings. Histol Histopathol 9:615–629PubMedGoogle Scholar
  116. 116.
    Berger A, Kofler B, Santic R, Zipperer E, Sperl W, Hauser-Kronberger C (2003) 125I-labeled galanin bindings sites in congenital innervation defects of the distal colon. Acta Neuropathol 105:43–48PubMedGoogle Scholar
  117. 117.
    Gonzalez-Martinez T, Perez-Pinera P, Diaz-Esnal B, Vega JA (2003) S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60:633–638PubMedGoogle Scholar
  118. 118.
    Alpy F, Ritie L, Jaubert F, Becmeur F, Mechine-Neuville A, Lefebvre O, Arnold C, Sorokin L, Kedinger M, Simon-Assmann P (2005) The expression pattern of laminin isoforms in Hirschsprung’s disease reveals a distal peripheral nerve differentiation. Hum Pathol 36:1055–1065PubMedGoogle Scholar
  119. 119.
    Kawana T, Nada O, Ikeda K (1988) An immunohistochemi­cal study of glial fibrillary acidic (GFA) protein and S-100 protein in the colon affected by Hirschsprung’s disease. Acta Neuropathol 76:159–165PubMedGoogle Scholar
  120. 120.
    Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of pre-synaptic vesicles. Cell 41:1017–1028PubMedGoogle Scholar
  121. 121.
    Kobayashi H, Miyano T, Yamataka A, Lane GJ, Fujimoto T, Puri P (1997) Use of synaptophysin polyclonal antibody for the rapid intraoperative immunohistochemical evalu­ation of functional bowel disorders. J Pediatr Surg 32:38–40PubMedGoogle Scholar
  122. 122.
    Obata K, Kojima N, Nishiye H, Inoue H, Shirao T, Fujita SC, et al (1987) Four synaptic vesicle-specific proteins: identification by monoclonal antibodies and distribution in the nervous tissue and the adrenal medulla. Brain Res 404:169–179PubMedGoogle Scholar
  123. 123.
    Yamataka A, Miyano T, Urano M, Nishiye H (1992) Hirschsprung’s disease: diagnosis using monoclonal antibody 171B5. J Pediatr Surg 27:820–822PubMedGoogle Scholar
  124. 124.
    Romanska HM, Bishop AE, Brereton RJ, Spitz L, Polak JM (1993) Immunocytochemistry for neuronal markers shows deficiencies in conventional histology in the treatment of Hirschsprung’s disease. J Pediatr Surg 28:1059–1062PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • U. Rolle
    • 1
  • P. Puri
    • 2
  1. 1.Department of Paediatric SurgeryUniversity of LeipzigLeipzigGermany
  2. 2.Children’s Research Centre, Our Lady’s Children’s HospitalUniversity College of DublinCrumlinIreland

Personalised recommendations