Advertisement

NADPH-Diaphorase Histochemistry

  • U. Rolle
  • P. Puri

Abstract

The introduction of rectal suction biopsy, while making the procedure less traumatic for the patient, has made the diagnosis of Hirschsprung’s disease (HD) more difficult for the pathologist. Many histopathologists are reluctant to make a positive diagnosis of HD on the basis of suction rectal biopsy results, using conventional H&E stains. This reluctance stems from doubt as to the amount of submucosa that must be scanned before the absence of ganglion cells can be confirmed, as well as the relative difficulty in accurately identifying smaller and sparse submucosal ganglion cells by comparison with the more compact and familiar ganglion cells of the intermuscular plexus.

Keywords

Nitric Oxide Myenteric Plexus Hypertrophic Pyloric Stenosis Infantile Hypertrophic Pyloric Stenosis Intestinal Neuronal Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lake BD, Puri P, Nixon HH, Claireaux AE (1978) Hirschsprung’s disease. An appraisal of histochemically demonstrated acetylcholine esterase in suction biopsy specimens as an aid to diagnosis. Arch Pathol Lab Med 102:244–247PubMedGoogle Scholar
  2. 2.
    Athow AC, Filipe MI, Drake DP (1990) Problems and advantages of acetylcholinesterase histochemistry of rectal suction biopsies in the diagnosis of Hirschsprung’s disease. J Pediatr Surg 25:520–526PubMedCrossRefGoogle Scholar
  3. 3.
    Lake BD (1983) Acetylcholinesterase in the diagnosis of Hirschsprung’s disease and other gastrointestinal disorders. In: Filipe MI, Luke BD (eds) Histochemistry in pathology. Churchill Livingstone, New York, pp 145–149Google Scholar
  4. 4.
    Sams VR, Bobrow LG, Happerfield l (1992) Evaluation of PGP9.5 in the diagnosis of Hirschsprung’s disease. J Pathol 168:55–58PubMedCrossRefGoogle Scholar
  5. 5.
    Yamataka A, Miyano T, Urao M (1985) Hirschsprung’s dis­ease: diagnosis using monoclonal antibody 171B5. J Pediatr Surg 27:820–822CrossRefGoogle Scholar
  6. 6.
    Vinores SA, May E (1985) Neuron-specific enolase as an immunohistochemical tool for the diagnosis of Hirschsprung’s disease. Am J Surg Pathol 9:281–285PubMedCrossRefGoogle Scholar
  7. 7.
    Mackenzie JM, Dixon MF (1987) An immunohistochemical study of the enteric neural plexi in Hirschsprung’s disease. Histopathology 11:1055–1066PubMedCrossRefGoogle Scholar
  8. 8.
    Brookes SJH (1993) Neuronal nitric oxide in the gut. J Gastroenterol Hepatol 8:590–603PubMedCrossRefGoogle Scholar
  9. 9.
    Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345:346–347PubMedCrossRefGoogle Scholar
  10. 10.
    Sanders KM, Ward S (1992) Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 262:G379–G392PubMedGoogle Scholar
  11. 11.
    Boeckxstaens GE, Pelckmans PA, Bult H, De Man JG, Herman AG, Van Maercke YM (1990) Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction. Eur J Pharmacol 190:239–246PubMedCrossRefGoogle Scholar
  12. 12.
    Goyal RK, He XD (1998) Evidence for NO redox form of nitric oxide as nitrergic inhibitory neurotransmitter in the gut. Am J Physiol 275:G1185–G1192PubMedGoogle Scholar
  13. 13.
    Burleigh DE (1992) Ng-nitro-L-arginine reduces nonadrenergic, noncholinergic relaxations of human gut. Gastroenterology 102:679–683PubMedGoogle Scholar
  14. 14.
    Shuttleworth CWR, Murphy R, Furness JB (19919 Evidence that nitric oxide participates in non-adrenergic inhibitory transmission to intestinal muscle in the guinea pig. Neurosci Lett 10:77–80Google Scholar
  15. 15.
    Boeckxstans GE, Pelckmans PA, Bogers JJ, et al (1991) Release of nitric oxide upon stimulation of nonadrenergic, noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther 256:441–447Google Scholar
  16. 16.
    Middleton SJ, Shorthouse M, Hunter JO (1993) Relaxation of distal colonic circular smooth muscle by nitric oxide derived from human leukocytes. Gut 34:814–817PubMedCrossRefGoogle Scholar
  17. 17.
    Ward SM, Xue C, Shuttleworth CW (1992) NADPH diaphorase and nitric oxide synthase colocalization in enteric neurons of canine proximal colon. Am J Physiol 263:G284–G288Google Scholar
  18. 18.
    Boeckxstaens GE, Pelckmans PA, Herman AG, et al (1993) Involvement of nitric oxide in the inhibitory innervation of the human isolated colon. Gastroenterology 104:690–697PubMedGoogle Scholar
  19. 19.
    Huizinga JD, Thuneberg L, Kluppel M (1995) W/kit gene required for intestinal cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349PubMedCrossRefGoogle Scholar
  20. 20.
    Stark ME, Bauer AJ, Sarr MG, Szurszewski JH, et al (1993) Nitric oxide mediates inhibitory nerve input in human and canine jejunum. Gastroenterology 104:398–409PubMedGoogle Scholar
  21. 21.
    Stebbing JF (1998) Nitric oxide synthase neurons and neuromuscular behaviour of the anorectum. Ann R Coll Surg Engl 80:137–145PubMedGoogle Scholar
  22. 22.
    Shuttleworth CW, Xue C, Ward SM, et al (1993) Immunohistochemical localization of 3′,5′-cyclic guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric inhibitory neurons. Neuroscience 56:513–522PubMedCrossRefGoogle Scholar
  23. 23.
    Lefebbvre RA (1995) Nitric oxide in the peripheral nervous system. Ann Med 27:379–388CrossRefGoogle Scholar
  24. 24.
    Vanderwinden JM, Mailleux P, Schiffmann SN, et al (1992) Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med 327:511–515PubMedCrossRefGoogle Scholar
  25. 25.
    Kobayashi H, O’Briain DS, Puri P (1995) Immunohistochemical characterization of neural cell adhesion molecule (NCAM), nitric oxide synthase, and neurofilament protein expression in pyloric muscle of patients with pyloric stenosis. J Pediatr Gastroenterol Nutr 20:319–325PubMedGoogle Scholar
  26. 26.
    Vanderwinden JM, De Laet MH, Schiffman SN, et al (1993) Nitric oxide synthase distribution in the enteric nervous system of Hirschsprung’s disease. Gastroenterology 105:969–973PubMedGoogle Scholar
  27. 27.
    Kobayashi H, O’Briain DS, Puri P (1994) lack of expression of NADPH-diaphorase and neural cell adhesion molecule (NCAM) in colonic muscle of patients with Hirschsprung’s disease. J Pediatr Surg 29:301–304PubMedCrossRefGoogle Scholar
  28. 28.
    Bealer JF, Natuzzi ES, Busche C, et al (1994) Nitric oxide synthase distribution is deficient in the aganglionic colon of patients with Hirschsprung’s disease. Pediatrics 93:647–651PubMedGoogle Scholar
  29. 29.
    Larsson LT, Shen Z, Ekblad E, Sundler F, Alm P, Andersson KE (1995) Lack of neuronal nitric oxide synthase in nerve fibres of aganglionic intestine: a clue to Hirschsprung’s dis­ease. J Pediatr Gastroenterol Nutr 20:49–53PubMedGoogle Scholar
  30. 30.
    Hirakawa H, Kobayashi H, O’Briain DS, et al (1995) Absence of NADPH-diaphorase activity in internal anal sphincter (IAS) achalasia. J Pediatr Gastroenterol Nutr 20:54–58PubMedCrossRefGoogle Scholar
  31. 31.
    Scherer-Singler U, Vincent SR, Rimura H, et al (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Methods 229–234Google Scholar
  32. 32.
    Gabella G (1967) Detection of nerve cells by a histochemical technique. Experientia 25:218–219CrossRefGoogle Scholar
  33. 33.
    Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A 88:7797–7801PubMedCrossRefGoogle Scholar
  34. 34.
    Hope BT, Micheal GJ, Knigge KM, et al (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A 88:2811–2814PubMedCrossRefGoogle Scholar
  35. 35.
    Rolle U, Nemeth L, Puri P (2002) Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg 37:551–567PubMedCrossRefGoogle Scholar
  36. 36.
    O’Kelly TJ, Davies JR, Tam PKH, Brading AF, Mortensen NJMC (1994) Abnormalities of nitric-oxide-producing neurons in Hirschsprung’s disease. Morphology and implications. J Pediatr Surg 29:294–300PubMedCrossRefGoogle Scholar
  37. 37.
    Kobayashi H, Hirakawa H, Puri P (1996) NADPH-diaphorase histochemistry: a reliable test for the intraoperative diagnosis of Hirschsprung’s disease. J Pediatr Surg 31:1552–1553PubMedCrossRefGoogle Scholar
  38. 38.
    Rolle U, Yoneda A, Puri P (2002) Abnormalities of c-Kit positive network in isolated hypoganglionosis. J Pediatr Surg 37:709–714PubMedCrossRefGoogle Scholar
  39. 39.
    Puri P, Rolle U (2004) Variant Hirschsprung’s disease. Semin Pediatr Surg 13:293–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • U. Rolle
    • 1
  • P. Puri
    • 2
  1. 1.Department of Paediatric SurgeryUniversity of LeipzigLeipzigGermany
  2. 2.Children’s Research Centre, Our Lady’s Children’s HospitalUniversity College of DublinCrumlinIreland

Personalised recommendations