Wind Energy pp 99-104 | Cite as

Wind Extremes and Scales: Multifractal Insights and Empirical Evidence

  • I. Tchiguirinskaia
  • D. Schertzer
  • S. Lovejoy
  • J. M. Veysseire
Conference paper


Probability Tail Short Range Correlation Wind Extreme Kinetic Energy Spectrum Turbulence Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richardson, L.F., Weather prediction by numerical process. 1922: Cambridge University Press republished by Dover, 1965Google Scholar
  2. 2.
    Richardson, L.F., Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc., 1926. A110: p. 709-737CrossRefGoogle Scholar
  3. 3.
    Schertzer, D. and S. Lovejoy, The dimension and intermittency of atmospheric dynamics, in Turbulent Shear Flow 4, B. Launder, Editor. 1985, Springer, Berlin Heidelberg New York. p. 7-33Google Scholar
  4. 4.
    Lilly, D.K., Theoretical predictability of small-scale motions, in Turbulence and predictability in geophysical fluid dynamics and climate dynamics, M. Ghil, R. Benzi, and G. Parisi, Editors. 1985, North Holland, Amsterdam. p. 281-280Google Scholar
  5. 5.
    Schertzer, D. and S. Lovejoy, Hard and Soft Multifractal processes. Physica A, 1992.185: p. 187-194CrossRefGoogle Scholar
  6. 6.
    Monin, A.S., Weather forecasting as a problem in physics. 1972, Boston Ma, MIT pressGoogle Scholar
  7. 7.
    Pedlosky, J., Geophysical fluid Dynamics. second ed. 1979, Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  8. 8.
    Van der Hoven, I., Power spectrum of horizontal wind speed in the frequency range from .0007 to 900 cycles per hour. J. Meteorol., 1957. 14: p. 160-164Google Scholar
  9. 9.
    Vinnichenko, N.K., The kinetic energy spectrum in the free atmosphere for 1 second to 5 years. Tellus, 1969. 22: p. 158CrossRefGoogle Scholar
  10. 10.
    Nastrom, G.D. and K.S. Gage, A first look at wave number spectra from GASP data. Tellus, 1983. 35: p. 383Google Scholar
  11. 11.
    Lilly, D. and E.L. Paterson, Aircraft measurements of atmospheric kinetic energy spectra. Tellus, 1983. 35A: p. 379-382Google Scholar
  12. 12.
    Chigirinskaya, Y., et al., Unified multifractal atmospheric dynamics tested in the tropics, part I: horizontal scaling and self organized criticality. Nonlinear Processes in Geophysics, 1994. 1(2/3): p. 105-114Google Scholar
  13. 13.
    Lazarev, A., et al., Multifractal Analysis of Tropical Turbulence, part II: Vertical Scaling and Generalized Scale Invariance. Nonlinear Processes in Geophysics, 1994.1 (2/3): p. 115-123Google Scholar
  14. 14.
    Lovejoy, S., D. Schertzer, and J.D. Stanway, Direct Evidence of Multifractal Atmospheric Cascades from Planetary Scales down to 1 km. Phys. Rev. Letter, 2001.86 (22): p. 5200-5203CrossRefGoogle Scholar
  15. 15.
    Lilley, M., et al., 23/9 dimensional anisotropic scaling of passive admixtures using lidar data of aerosols. Phys Rev. E, 2004. 70: p. 036307-1-7Google Scholar
  16. 16.
    Kolmogorov, A.N., Local structure of turbulence in an incompressible liquid for very large Raynolds numbers. Proc. Acad. Sci. URSS., Geochem. Sect., 1941. 30: p. 299-303Google Scholar
  17. 17.
    Bolgiano, R.,Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 1959. 64: p. 2226CrossRefGoogle Scholar
  18. 18.
    Obukhov, A.N., Effect of Archimedian forces on the structure of the temperature field in a temperature flow. Sov. Phys. Dokl., 1959. 125: p. 1246Google Scholar
  19. 19.
    Gumbel, E.J., Statistics of the Extremes. 1958, Colombia University Press, New York 371Google Scholar
  20. 20.
    Leadbetter, M.R., G. Lindgren, and H. Rootzen, Extremes and related properties of random sequences and processes. Springer series in statistics. 1983, Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. 21.
    Frechet, M., Sur la loi de probabilité de l’ecart maximum. Ann. Soc. Math. Polon., 1927. 6: p. 93-116Google Scholar
  22. 22.
    Loynes, R.M., Extreme value in uniformly mixing stationary stochastic processes. Ann. Math. Statist., 1965. 36: p. 993-999CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Leadbetter, M.R. and H. Rootzen, Extremal theory for stochastic processes. Ann. Prob., 1988. 16(2): p. 431-478CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • I. Tchiguirinskaia
    • 1
  • D. Schertzer
    • 2
  • S. Lovejoy
    • 3
  • J. M. Veysseire
    • 4
  1. 1.CEREVE, ENPCMarne-la-Vallée cedexFrance
  2. 2.CEREVE, ENPCMarne-la-Vallée cedexFrance
  3. 3.Physics, McGill UniversityMontreal, Que.Canada
  4. 4.Direction de la Climatologie, Météo-FranceToulouse CedexFrance

Personalised recommendations