Advertisement

An Extreme Environment on Earth: Deep-Sea Hydrothermal Vents. Lessons for Exploration of Mars and Europa

  • Daniel Prieur
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Keywords

Hydrothermal Vent Deinococcus Radiodurans Tube Worm Anaerobic Methane Oxidation Maximum Growth Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alain K (2003) Approches culturales et moléculaires des assemblages microbiens associés aux Polychètes hydrothermaux de la famille Alvinellidae. Dissertation, l’université de Brest (France).Google Scholar
  2. Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien JL (2002) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52: 1331–1339.CrossRefGoogle Scholar
  3. Battista JR (1997) Against all odds: the survival strategies of deinococcus radiodurans. Annu Rev Microbiol 18: 203–224.CrossRefGoogle Scholar
  4. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. nov., sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1: 14–21.CrossRefGoogle Scholar
  5. Brock TD (1985) Life at high temperatures. Science 230: 545550.CrossRefGoogle Scholar
  6. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus, sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13: 24–28.Google Scholar
  7. Cary SC, Giovannoni SJ (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90: 56955699.CrossRefGoogle Scholar
  8. Carry SC, Cottrell MT, Stein JL, Camacho F, Desbruyères D (1997) molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid alvinella pompejana. Appl Environ Microbiol 63: 1124–1130.Google Scholar
  9. Cavanaugh CM, Gardiner Sl, Jones ML, Jannasch HW, Watrebury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340–341.CrossRefGoogle Scholar
  10. Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature 302: 58–61.CrossRefGoogle Scholar
  11. Cavanaugh CM, Wirsen CO, Jannasch HW (1992) Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia:Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microbiol 58: 3799–3803.Google Scholar
  12. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm, N (2002) Geochemistry of high H2 and CH4 vent fluids issiung from ultramafic rocks at the rainbow hydrothermal field (36°14′N, Mar Mol Biol Biotechnol). Chem Geol 191: 345–359.CrossRefGoogle Scholar
  13. Chevaldonné P, Desbruyères D, Childress JJ (1992) Some like it hot and some even hotter. Nature 359: 593–594.CrossRefGoogle Scholar
  14. Corliss JB, Dymond J, Gordon LI, Edmond J, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.CrossRefGoogle Scholar
  15. Deming JW, Baross JA (1993) Deep-sea smokers: windows to a subsurface biosphere. Geochim Cosmochim Acta 57: 3219–3230.CrossRefGoogle Scholar
  16. Durand P, Reysenbach A-L, Prieur D, Pace N (1993) Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolitotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159: 39–44.CrossRefGoogle Scholar
  17. Edmond J, van Damm K, MacDuff R, Measures C (1982) Chemistry of hot springs on the East Pacific Rise. Nature 297: 187–191.CrossRefGoogle Scholar
  18. Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160: 338–349.CrossRefGoogle Scholar
  19. Felbeck H (1985) CO2 fixation in the hydrothermal vent tube worm Riftia pachyptila (Jones). Physiol Zool 58: 272–281.Google Scholar
  20. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaeabacteria growing up to 98°C. Syst Appl Microbiol 8:106–113.Google Scholar
  21. Gérard E, Jolivet E, Prieur D and Forterre P (2001) DNA protection is not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus furiosus. Mol Genet Genom 266: 72–78.CrossRefGoogle Scholar
  22. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63–67.CrossRefGoogle Scholar
  23. Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Ann Rev Microbiol 38: 487–514.CrossRefGoogle Scholar
  24. Jeanthon C (2000) Molecular ecology of hydrothermal vent microbial communities. Antonie van Leewenhoek 77: 117–133.CrossRefGoogle Scholar
  25. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. Nov., a hyperthermophilic archaeon from deep-sea hydrothermal vent that reists ionizing radiation. Int J Syst Evol Microbiol 53: 847–851.CrossRefGoogle Scholar
  26. Jones WJ, Leigh JA, Mayer F, Woese F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136: 254–261.CrossRefGoogle Scholar
  27. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301: 934–935.CrossRefGoogle Scholar
  28. Kato C (1999) Barophiles (piezophiles). In: Horikoshi K, Tsujii K (eds.) Extremophiles in Deep-Sea Environments, pp. 91–111. Springer, Berlin Heidelberg New York.Google Scholar
  29. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247.CrossRefGoogle Scholar
  30. Le Pennec M, Prieur D (1984) Observations sur la nutrition d’un Mytilidae d’un site actif de la dordale du Pacifique oriental. CR Acad Sci Paris 298: 493–498.Google Scholar
  31. Madigan MT, Martinko JM, Parker K (2003). Brock Biology of Microorganisms. Pearson Education, Upper Saddle River, NJ, p. 1019.Google Scholar
  32. Marteinsson VT, Moulin P, Birrien JL, Gambacorta A, Vernet M, Prieur D (1997) Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent Archaeon Pyrococcus abyssi. Appl Environ Microbiol 63: 1230–1236.Google Scholar
  33. Marteinsson VT, Reysenbach AL, Birrien JL, Prieur D (1999) A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3: 277–282.CrossRefGoogle Scholar
  34. Marteinsson VT, Birrien JL, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr U, Prieur D (1999) Thermococcus barophilus sp. Nov., a new barophilic and hypertermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49: 351–359.CrossRefGoogle Scholar
  35. Petit JR, Blot M, Bulat S (2003) Le lac Vostok: à la découverte d’un environnement sous glaciaire et de son contenu biologique. In: Gargaud M (ed.) Les traces du vivant, pp. 275–318. Presses Universitaires de Bordeaux, Bordeaux.Google Scholar
  36. Polz MF, Cavanaugh CM (1995) Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci USA 92: 7232–7236.CrossRefGoogle Scholar
  37. Prieur D (1992) Physiology and biotechnological potential of deep-sea bacteria. In: Herbert RA, Sharp RJ (eds.) Molecular Biology and Biotechnology of Extremophiles, pp. 163–202. Blackie, New York.Google Scholar
  38. Prieur D, Marteinsson VT (1998) Prokaryotes living under elevated hydrostatic pressure. Adv Biochem Eng Biotechnol 61: 23–35.Google Scholar
  39. Prieur D (2003) Diversité des métabolismes. In: Gargaud M (ed.) Les traces du vivant, pp. 243–254. Presses Universitaires de Bordeaux, Bordeaux.Google Scholar
  40. Prieur D (2004) Microbiology of deep-sea hydrothermal vents: lessons for Mars exploratioon. In: Tokano T (ed.) Water on Mars and Life, pp. 299–318. Springer, Berlin Heidelberg New York.Google Scholar
  41. Prieur D, Benbouzid-Rollet N, Chamroux S, Durand P, Erauso G, Jacq E, Jeanthon C, Mevel G, Vincent P (1989) Distribution de divers types métaboliques bactériens sur un site hydrothermal profond (Dorsale de Pacifique Oriental à 13°N). Cahiers Biol Mar 30: 515–530.Google Scholar
  42. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50(2): 489–500.Google Scholar
  43. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407: 897–900.CrossRefGoogle Scholar
  44. Woese C (1987) Bacterial evolution. Microbiol Rev 51: 221–271.Google Scholar
  45. Yayanos AA (1986) Evolution and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 83: 9542–9546.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Prieur
    • 1
  1. 1.Laboratoire de Microbiologie des Environnements ExtrêmesUniversité de Bretagne OccidentaleBrestFrance

Personalised recommendations