MEMS and NEMS Simulation

  • Jan G. Korvink
  • Evgenii B. Rudnyi
  • Andreas Greiner
  • Zhenyu Liu

Abstract

Because MEMS and NEMS touch on so many application areas, the ideal simulation tool must follow suite and provide a vast range of coupled multidomain physical effects. In reality, no single tool caters to all the needs of the MEMS community. Hence, MEMS designers carry the burden tofind theappropriate toolsand strategy for their task. Fortunately, many alternative routes exist to achieve a given goal, but some insight is needed to get the most out of the simulators, especially if the target isto use simulation to achieve a design advantage. In this chapter we take a closer look at what is out there, and at the key features of each simulation method. We develop a simulation strategy to maximize the benefit from simulation, picking out a couple of key areas that are currently the focusof commercial applications. Toround off the chapter, we illustrate the ideas with some concrete applications from our own work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    A. Nathan and H. Baltes, Microtransducer CAD: Physical and Computa tional Aspects, Springier-Verlag, Wien (1999)Google Scholar
  2. 3.
    A. Nathan (ed.), “Special issues on modelling,” Sens. Mater., 6(2–4) (1994)Google Scholar
  3. 4.
    J. G. Korvink and H. Baltes, invited review, “Sensors Update,” chap. 6 in Microsystem Modeling, vol. 2, VCH Verlag, Weinheim (1996), pp. 181–209Google Scholar
  4. 5.
    J. G. Korvink, A. Nathan, and H. Baltes, invited review, “cal Microsystem Modeling and Simulation,” chap. 4 in MEMS and MOEMS Technology and Applications, vol. PM85 (P. Rai-Choudhury, ed.), SPIE Press, Bellingham (2000), pp. 109–168Google Scholar
  5. 6.
    G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD (1996)MATHGoogle Scholar
  6. 7.
    Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co., Boston, MA (1996)MATHGoogle Scholar
  7. 8.
    E. L. Allgower and K. Georg, “Numerical Path Following,” in Handbook of Numerical Analysis, vol. 5 (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam (1997), pp. 3–207Google Scholar
  8. 9.
    W. Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag, Berlin and New York (1985)MATHGoogle Scholar
  9. 10.
    M. Emmenegger, J. G. Korvink, M. Bächtold, M. von Arx, O. Paul, and H. Baltes, “Applicationof harmonic finite element analysis to a CMOS heat capacity measurement structure,” Sens. Mater., 10:405–412 (1998)Google Scholar
  10. 11.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, New York, and Oxford University Press, Oxford, England (2001)Google Scholar
  11. 12.
    D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, San Diego, CA (1996)MATHGoogle Scholar
  12. 13.
    J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley, New York, NY (1997)Google Scholar
  13. 14.
    A. R. Leach, Molecular Modelling: Principles and Applications, Longman Publishing Group, White Plains, NY (1996)Google Scholar
  14. 15.
    D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, UK (1995)Google Scholar
  15. 16.
    M. Parrinello, “Simulating complex systemswithout adjustable parameters,” Computing Sei. Eng., 2:22–27 (2000)CrossRefGoogle Scholar
  16. 17.
    A. Nakano, M. E. Bachlechner, R. K. Kalia, E. Lidorikis, P. Vashishta, G. Z. Voyiadjis, T. J. Campbell, S. Ogata, and F. Shimojo, “Multiscale simulation of nanosystems,” Computing Sei. Eng., 3:56–66 (2001)CrossRefGoogle Scholar
  17. 20.
    J. N. Israelachvili, lntermolecular and Surface Forces, 2nd ed., Academic Press, San Diego, CA (1992)Google Scholar
  18. 21.
    N. Saunders and A. P. Miodownik, CALPHAD: Calculation of Phase Diagrams: A Comprehensive Guide, Pergamon, Oxford and New York (1998)Google Scholar
  19. 22.
    M. Hillert, Phase Equilibria, Phase Diagrams, and Phase Transformations: TheirThermodynamic Basis, Cambridge University Press, Cambridge and New York (1998)Google Scholar
  20. 23.
    A. V. Antipov, E. B. Rudnyi, and Z. V. Dobrokhotova, “Thermodynamic evaluation of the Bi-Se system,” Inorg.Mater., 37:126–132 (2001)CrossRefGoogle Scholar
  21. 24.
    P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed., Cambridge University Press, New York, NY (1996)Google Scholar
  22. 25.
    O. C. Zienkiewicz and R. L. Taylor, The Element Method, 5th ed., Butter-worth-Heinemann, Oxford and Boston (2000).MATHGoogle Scholar
  23. 27.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, Wien, Austria, and New York (1984)Google Scholar
  24. 28.
    A. Iserles, First Course in Numerical Solution of Differential Equations, Cambridge University Press, Cambridge, UK (1996)Google Scholar
  25. 29.
    C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel, Boundary Element Techniques: Theory and Applications in Engineering, Springer-Verlag, Berlin and New York (1984)MATHGoogle Scholar
  26. 30.
    L. Greengard and S. Wandzura, “Fast multipole methods,” Comp. Sei. Eng., 5(3):16–18 (1998)Google Scholar
  27. 31.
    M. Kamon, M.J. Ttsuk, and J.K. White, “FASTHENRY: A multipole-accel-erated 3-D inductance extraction program,” Trans Microwave Theory and Techniques, 42(9): 1750–1758 (1994)CrossRefGoogle Scholar
  28. 32.
    M. Bächtold, J. G. Korvink, and H. Baltes, “Enhanced multipole acceleration technique for the solution of large Poisson computations,” Trans. CAD Integrated Circuits and Systems, 12:1541–1546 (1996)CrossRefGoogle Scholar
  29. 33.
    J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd ed., Cambridge University Press, Cambridge and New York (1999)MATHGoogle Scholar
  30. 34.
    R. T. Haftka and Z. Gürdal, Elements of Structural Optimization, Kluwer Academic Publishers Group, Dordrecht (1992)MATHGoogle Scholar
  31. 35.
    E. J. Haug, K. K. Choi, and V. Komkov, Design Sensitivity Analysis of Structure System, Academic Press, New York (1986)Google Scholar
  32. 36.
    NEOS Guide Optimization Tree; available at http://www.ece.northwestern.edu/OTC/ Google Scholar
  33. 37.
    J. Nocedal and S. J. Wright, Numerical Optimization, Springer, Berlin (1999)MATHCrossRefGoogle Scholar
  34. 38.
    M. P. Bendsoe and O. Sigmund, Topology Optimization — Theory, Methods and Applications, Springer, Berlin and Heidelberg (2002)Google Scholar
  35. 39.
    U. D. Larsen, O. Sigmund, and S. Bouwstra, “Design and fabrication of compliant micromechanisms and structures with negative poisson’s ratio,” J. MEMS, 6:99–106 (1997)Google Scholar
  36. 40.
    O. Sigmund and S. Torquato, “Design of materials with extreme thermal expansion using a three-phase topology optimization method,” J. Mech. Phys. Solids, 45:1037–1067 (1997)CrossRefMathSciNetGoogle Scholar
  37. 41.
    O. Sigmund, “Microstructural design of elastic band gap structures,” Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization, Liaoning Electronic Press, Dalian, China (2001)Google Scholar
  38. 42.
    P. L. George, Automatic Mesh Generation: Application to Finite Element Methods, J. Wiley, Chichester, New York, and Masson Publishers, Paris (1991)MATHGoogle Scholar
  39. 43.
    Jens Müller, Accurate FE-Simulation of Three-Dimensional Microstructures, Fakultät für Angewandte Wissenschaften, Albert-Ludwigs Universität Freiburg im Breisgau, 2001; available at http://www.freidok.unifreiburg.de/volltexte/251/pdf/thesis.pdf Google Scholar
  40. 44.
    H. Chiyokura, Solid Modelling with Designbase: Theory and Implementation, Addison-Wesley, Singapore and Reading, MA (1988)Google Scholar
  41. 45.
    E. B. Rudnyi and J. G. Korvink, “Review: automatic model reduction for transient simulation of MEMS-based devices, Sensors Update, 11:3–33 (2002)CrossRefGoogle Scholar
  42. 46.
    A. C. Antoulas and D. C. Sorensen, “Approximation of large-scale dynamical systems: an overview,” Rice University Technical Report, Houston, TX (2001); http://www-ece rice,edu/~aca/mtns00.pdf Google Scholar
  43. 47.
    G. Obinata and B. D. O. Anderson, Model Reduction for Control System Design, Springer Verlag, London, Berlin, and Heidelberg (2000)Google Scholar
  44. 48.
    A. Varga, “Model reduction software in the SLICOT library,” in Applied and Computational Control, Signals, and Circuits, vol. 2 (B. N. Datta, ed.), Kluwer Academic Publishers, Boston, MA (2001), pp. 239–282Google Scholar
  45. 49.
    R. W. Freund, “Reduced-order modeling techniques based on Krylov sub-spaces and their use in circuit simulation,” in Applied and Computational Control, Signals, and Circuits, (B. N. Datta, ed.), Birkhauser, Boston, MA (1999), pp. 435–498Google Scholar
  46. 50.
    T. Penzl, “A cyclic low-rank Smith method for large sparse Lyapunov equations,” SIAMJ. Sei. Comput. 21:1401–1418 (2000)MATHCrossRefMathSciNetGoogle Scholar
  47. 51.
    J. Li and J. White, “Low rank solution of Lyapunov equations,” SIAM J. Matrix Anal. Appl., 24:260–280 (2002)CrossRefMathSciNetGoogle Scholar
  48. 53.
    CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, Chemical Rubber Company, CRC Press, Boca Raton, FL (1999/2000)Google Scholar
  49. 55.
    Evaluated Kinetic Data, IUPAC: Subcommittee for Gas Kinetic Data Evaluation, http://www.iupac-kinetic,ch.cam.ac.uk/ Google Scholar
  50. 56.
    O. Paul, J. G. Korvink, and H. Baltes, “Determination of thermophysical properties of CMOS IC polysilicon, Sensors and Actuators, A41–42:161–164 (1993)Google Scholar
  51. 58.
    H. Baltes, “CMOS as sensor technology,” Sensors and Actuators, A37-A38:51–56(1993)Google Scholar
  52. 59.
    C. Rossi, “Micropropulsion for space A survey of MEMS-based micro thrusters and their solid propellant technology,” Sensors Update, 10:257–292 (2002)CrossRefGoogle Scholar
  53. 60.
    E. B. Rudnyi, T. Bechtold, J. G. Korvink, and C. Rossi, “Solid propellant microthruster: theory of operation and modelling strategy,” Nanotech 2002, At the Edge of Revolution, September 9–12, 2002, aHouston, TX, AIAA paper 2002-5755Google Scholar
  54. 61.
    T. Bechtold, E. B. Rudnyi, and J. G. Korvink, “Automatic generation of compact electrothermal models for semiconductor devices,” IEICE Trans. Electronics, E86C459–465 (2003)Google Scholar
  55. 63.
    K. E Böhringer, R. S. Fearing, and K. Y. Goldberg, “Microassembly,” in The Handbook of Industrial Robotics, 2nd ed., John Wiley & Sons, NY (1999), pp. 1045–1066Google Scholar
  56. 64.
    U. Srinivasan, R. T. Howe, and D. Liepmann, “Microstructure to substrate self-assembly using capillary forces,”. MEMS, 10:17–24 (2001)Google Scholar
  57. 65.
    K. F. Böhringer, U. Srinivasan, and R. T. Howe, “Modeling of capillary forces and binding sites for fluidic self-assembly”, IEEE Workshop on Micro Electro Mechanical Systems (MEMS), Interlaken, Switzerland, January 21–25, 2001Google Scholar
  58. 66.
    K. A. Brakke, Surface Evolver Manual, Mathematics Department, Susquehanna University, Selingsgrove, PA (1999)Google Scholar
  59. 67.
    J. Lienemann, “Modelling and simulation of the microfluidic self-assembly of microparts,” diploma thesis, Albert Ludwig University, Freiburg (2002)Google Scholar
  60. 68.
    A. Greiner, J. Lienemann, J. G Korvink, X. Xiong, Y. Hanein, and K. F. Boehringer, “Capillary forces in micro-fluidic self-assembly,” Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Micorsystems NanoTech 2002-MSM2002, Puerto Rico, pp. 198–201 (2002)Google Scholar
  61. 69.
    J. Lienemann, A. Greiner, J. G Korvink, and O. Sigmund, “Optimization of integrated magnetic field sensors,” Technical Proceedings of the MSM 2001 4th International Conference on Modeling and Simulation of Microsystems, Hilton Head Island, USA (2001), pp. 120–123Google Scholar
  62. 70.
    S. Middelhoek and S. A. Audet, Silicon Sensors, Department of Electrical Engineering, Laboratory of Electronic Instrumentation, Delft University of Technology (1994)Google Scholar
  63. 71.
    P. J. A. Munter, “A low-offset spinning current Hall plate,” Sensors and Actuators, A21–A23:743–746 (1990)Google Scholar
  64. 72.
    R. Steiner, A. Haeberli, F.-P. Steiner, C. Maier, and H. Baltes, “Offset reduction in Hall devices by continuous spinning current,” Sensors and Actuators, A66:167 (1998)Google Scholar
  65. 73.
    M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng., 71:197–224(1988)CrossRefGoogle Scholar
  66. 74.
    M. P. Bendsøe: Optimization of Structural Topology, Shape and Material, Springer, Berlin and Heidelberg (1995)Google Scholar
  67. 75.
    O. Sigmund, “On the design of compliant mechanisms using topology optimization,” Mech. Structures and Machines, 25(4):495–526 (1997)Google Scholar
  68. 76.
    M. P. Bendsøe and O. Sigmund, “Material interpolations in topology optimization,” Archive Appl. Mech., 69:635–654 (1999)CrossRefGoogle Scholar
  69. 77.
    R. Osorio, M. Mayer, J. Schwitzer, H. Baltes, and J. G. Korvink, “Simulation procedure to improve piezoresistive microsensors used for monitoring ball bonding,” Sensors and Actuators, 92(1–3):299–304 (2001)Google Scholar
  70. 78.
    C. W. Wilmsen, Vertical Cavity Surface Emitting Lasers, Cambridge University Press, Cambridge, England (1999)Google Scholar

Copyright information

© William Andrew, Inc. 2006

Authors and Affiliations

  • Jan G. Korvink
    • 1
  • Evgenii B. Rudnyi
    • 1
  • Andreas Greiner
    • 1
  • Zhenyu Liu
    • 1
  1. 1.Institute of Microsystem Technology IMTEKUniversity of FreiburgGermany

Personalised recommendations