Computation of Delta Wing Flap Oscillations with a Reynolds-Averaged Navier-Stokes Solver

  • Alexander Allen
  • Michail Iatrou
  • Alexander Pechloff
  • Boris Laschka
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 92)


A selection of steady and unsteady validation results for the Reynolds-averaged Navier-Stokes solver FLM-NS with respect to an experimental delta wing test case is presented and compared to other numerical results. Having put the numerical method’s validity into evidence, the unsteady flow induced by an oscillating flap is investigated for a Fighter Type Delta Wing.


Turbulence Model Pressure Coefficient Wing Surface Span Station Freestream Mach Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baldwin B. S., Lomax H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257, NASA Ames Research Center, Moffett Field, CA, USA, 1978.Google Scholar
  2. [2]
    Bennett R. M., Walker C. E.: Computational Test Cases for a Clipped Delta W’mg With Pitching and Trailing-Edge Control Surface Oscillations. NASA-TM-1999-209104, NASA Langley Research Center, Hampton, Virginia, 1999.Google Scholar
  3. [3]
    Blazek J.: Investigations of the Implicit LU-SSOR Scheme. DLR-FB 93-51, DLR, 1993.Google Scholar
  4. [4]
    Chakravarthy S. R.: High Resolution Upwind Formulations for the Navier-Stokes Equations. Rockwell Int. Science Center, USA, 1988.Google Scholar
  5. [5]
    Kroll N.: FLOWer Installation and User Handbook, Release 116. Institut für Entwurfsaerodynamik, DLR, Braunschweig, 2001.Google Scholar
  6. [6]
    Markmiller J.: Validierung eines zeitechten und eines small diSttLrbance Navier-Stokes Verfahrens an einem sehwingenden Deltaflügel. Diploma thesis, Technische Universität München, TUM-FLM-2003/28, 2003.Google Scholar
  7. [7]
    Obayashi S., Garuswamy G. P.: Navier-Stokes Computations for Oscillating Control Surfaces. Journal of Aircraft, Vol. 31, pp. 631–636, 1994.CrossRefGoogle Scholar
  8. [8]
    Spalart P. R., Allmaras S. R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439, 30th Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 6.-9. January, 1992.Google Scholar
  9. [9]
    Wilcox D. C.: Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA-Joumal, Vol. 26, pp. 1299–1310, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    ICEM-CFD Hexa, Operating Manual. ICEM CFD & Structural Engineering GmbH, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander Allen
    • 1
  • Michail Iatrou
    • 1
  • Alexander Pechloff
    • 1
  • Boris Laschka
    • 1
  1. 1.Technische Universität München, Lehrstuhl für Fluidmechanik, Abteilung Aerodynamik

Personalised recommendations