Illustrating the classification of real cubic surfaces

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Singular Point Jacobian Ideal Tangent Cone Algebraic Surface Topological Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko. Singularities of Differentiable Maps. Birkhäuser, 1985.Google Scholar
  2. 2.
    J.W. Bruce and C.T.C. Wall. On the Classification of Cubic Surfaces. J. Lond. Math. Soc., II. ser., (19):245-259, 1979.CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Cayley. A Memoir on Cubic Surfaces. Philos. Trans. Royal Soc., CLIX:231- 326,1869.Google Scholar
  4. 4.
    M. Demazure. Surfaces de Del Pezzo, I, II, III, IV et V. In M. Demazure, H. Pinkham, and B. Teissier, editors, Séminaire sur les singularités des surfaces, Lecture Notes in Math. 777, pages 21-69. Springer-Verlag, 1980.Google Scholar
  5. 5.
    A. Dimca. Topics on Real and Complex Singularities. Vieweg, 1987.Google Scholar
  6. 6.
    S. Endraß. Symmetrische Flächen mit vielen gewöhnlichen Doppelpunkten. PhD thesis, Fr.-A.-Universität Erlangen-Nürnberg, 1996.zbMATHGoogle Scholar
  7. 7.
    S. Endraß. Surf 1.0.3., 2001. A Computer Software for Visualising Real Algebraic Geometry.
  8. 8.
    G. Fischer. Mathematische Modelle/Mathematical Models. Vieweg, 1986. Bildband, Kommentarband.Google Scholar
  9. 9.
    G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer Algebra System for Polynomial Computations, Univ. Kaiserslautern, 2001.
  10. 10.
    S. Holzer, O. Labs, and R. Morris. surfex - Visualization of Real Algebraic Surfaces., 2005.
  11. 11.
    F. Klein.Über Flächen dritter Ordnung. Math. Annalen, VI:551-581, Tafeln I-VI, 1873. also in: [12], p. 11-62.Google Scholar
  12. 12.
    F. Klein. Gesammelte Mathematische Abhandlungen, volume II. Verlag von Julius Springer, Berlin, 1922.Google Scholar
  13. 13.
    H. Knörrer and T. Miller. Topologische Typen reeller kubischer Flächen. Mathematische Zeitschrift, 195, 1987.Google Scholar
  14. 14.
    O. Labs. Algebraic Surface Homepage. Information, Images and Tools on Algebraic Surfaces., 2003.
  15. 15.
    O. Labs and D. van Straten. The Cubic Surface Homepage., 2000.
  16. 16.
    O. Labs and D. van Straten. A Visual Introduction to Cubic Surfaces Using the Computer Software Spicy. In M. Joswig and N. Takayama, editors, Algebra, Geometry, and Software Systems, pages 225-238. Springer, 2003.Google Scholar
  17. 17.
    R. Morris. LSMP: Liverpool surface modeling package. http://www, 2003.
  18. 18.
    K. Polthier. JavaView., 2001.
  19. 19.
    L. Schläfli. On the Distribution of Surfaces of the Third Order into Species, in Reference to the Presence or Absence of Singular Points and the Reality of their Lines. Philos. Trans. Royal Soc., CLIII:193-241, 1863.CrossRefGoogle Scholar
  20. 20.
    B. Segre. The non-singular Cubic Surfaces. Clarendon, Oxford, 1942.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Johannes Gutenberg UniversitätMainzGermany
  2. 2.Johannes Gutenberg UniversitätMainzGermany

Personalised recommendations