Singularities and their deformations: how they change the shape and view of objects

  • Alexandru Dimca
Part of the Mathematics and Visualization book series (MATHVISUAL)


Fundamental Group Homology Group Betti Number Hyperplane Arrangement Integral Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko: Singularities of Differentiable Maps, Vol. 1 and 2, Monographs in Math., vol. 82 and 83, Birkhäuser 1985, 1988.Google Scholar
  2. 2.
    J. Bochnak, M. Coste, M.-F. Roy: Géométrie algébrique réelle, Erg. der Math-ematik, vol. 12, Springer Verlag 1987.Google Scholar
  3. 3.
    J.W. Bruce and C.T.C. Wall: On the classification of cubic surfaces, J. London Math. Soc. 19, 1979, 245-256.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Degtyarev and V. Kharlamov: Topological properties of real algebraic vari-eties: Rokhlin’s way. Russ. Math. Surveys 55, 2000, 735-814.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Dimca: Topics on Real and Complex Singularities, Vieweg Advanced Lectures in Math.,Vieweg 1987.Google Scholar
  6. 6.
    A. Dimca: Singularities and Topology of Hypersurfaces, Universitext, Springer, 1992.MATHGoogle Scholar
  7. 7.
    A. Dimca: Sheaves in Topology, Universitext, Springer-Verlag, 2004.MATHGoogle Scholar
  8. 8.
    A. Dimca: Hyperplane arrangements, M-tame polynomials and twisted co-homology, Commutative Algebra, Singularities and Computer Algebra, Eds. J. Herzog, V. Vuletescu, NATO Science Series, Vol. 115, Kluwer, 2003, pp. 113-126.Google Scholar
  9. 9.
    A. Dimca: On the Milnor fibrations of weighted homogeneous polynomials, Com-positio Math. 76, 1990, 19-47.MATHMathSciNetGoogle Scholar
  10. 10.
    A. Dimca, J. Hillman, L. Paunescu: On hypersurfaces in real projective spaces, Far East J. Math. Sciences 5(1997),159-168.MATHMathSciNetGoogle Scholar
  11. 11.
    A. Dimca and S. Papadima: Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements, Annals of Math. 158, 2003, 473-507.MATHMathSciNetGoogle Scholar
  12. 12.
    A. Dimca and A. Némethi: Hypersurface complements, Alexander modules and monodromy, ‘Proceedings of the 7th Workshop on Real and Complex Singular-ities, Sao Carlos, 2002, M. Ruas and T. Gaffney Eds, Contemp. Math. AMS. 354,2004,19-43.Google Scholar
  13. 13.
    W. Fulton: Algebraic Topology, a first course, GTM 153, Springer, 1995.Google Scholar
  14. 14.
    M. Golubitsky and V. Guillemin: Stable Mappings and their Singularities, GTM 14, Springer, 1973.Google Scholar
  15. 15.
    A. Libgober: Alexander invariants of plane algebraic curves, Proc. Symp. Pure Math. 40, Part 2, AMS, 1983, 135-144.Google Scholar
  16. 16.
    A. Libgober: Homotopy groups of the complements to singular hypersurfaces II, Annals of Math. 139, 1994, 117-144.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Libgober: Eigenvalues for the monodromy of the Milnor fibers of arrange-ments. In: Libgober, A., Tibăr, M. (eds) Trends in Mathematics: Trends in Singularities. Birkhäuser, Basel, 2002.Google Scholar
  18. 18.
    A. Libgober: Isolated non-normal crossing, Proceedings of the 7th Workshop on Real and Complex Singularities, Sao Carlos, 2002, M. Ruas and T.Gaffney Eds, Contemp. Math. AMS. 354, 2004, 145-160.Google Scholar
  19. 19.
    L. Maxim: Intersection homology and Alexander modules of hypersurface complements. arXiv:math.AT/0409412.Google Scholar
  20. 20.
    C. McCrory, A. Parusinski: Complex monodromy and the topology of real algebraic sets, Compositio Math. 106, 1997, 211-233.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Milnor: Singular Points of Complex Hypersurfaces, Annals Math. Studies 61, Princeton, 1968.Google Scholar
  22. 22.
    P. Orlik and H. Terao: Arrangements of Hyperplanes, Grundlehren300, Springer-Verlag, 1992.Google Scholar
  23. 23.
    A. Parusinski, P. Pragacz: A formula for the Euler characteristic of singular hypersurfaces, J. Algebraic Geometry, 4, 1995, 337-351.MATHMathSciNetGoogle Scholar
  24. 24.
    L. Paunescu: The topology of the real part of a holomorphic function, Math. Nachrichten, 174, 1995, 265-272.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    R. Piene: Cycles polaires et classes de Chern pour les variétés projectives sin-gulières, in: Introduction à la théorie des singularités II, Travaux en cours 37, Hermann Paris, 1988.Google Scholar
  26. 26.
    D. Rolfsen: Knots and Links, Publish or Perish, 1976.Google Scholar
  27. 27.
    D. Siersma: The vanishing topology of non-isolated singularities, in: D. Siersma, C.T.C. Wall, V.Zakalyukin (Eds.), New Developments in Singularity Theory, NATO Science Series 21, Kluwer, 2001, pp. 447-472.Google Scholar
  28. 28.
    R. Silhol: Real Algebraic Surfaces, Lecture Notes in Math. 1392, Springer-Verlag, 1989.Google Scholar
  29. 29.
    E. Spanier: Algebraic Topology, McGraw-Hill, 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexandru Dimca
    • 1
  1. 1.Laboratoire J.A. Dieudonné, UMR du CNRS 6621Universié de Nice-Sophia-AntipolisParc ValroseFRANCE

Personalised recommendations