Piecewise approximate implicitization: experiments using industrial data

  • Mohamed F. Shalaby
  • Jan B. Thomassen
  • Elmar M. Wurm
  • Tor Dokken
  • Bert Jüttler
Part of the Mathematics and Visualization book series (MATHVISUAL)


Singular Value Decomposition Spline Function Implicit Representation Implicit Surface Piecewise Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chuang, J., Hoffmann, C.: On local implicit approximation and its applications. ACM Trans. Graphics 8, 4:298-324, (1989)zbMATHCrossRefGoogle Scholar
  2. 2.
    Corless, R., Giesbrecht, M., Kotsireas, I., Watt., S.: Numerical implicitization of parametric hypersurfaces with linear algebra. In: AISC’2000 Proceedings, Springer, LNAI 1930.Google Scholar
  3. 3.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, Springer, New York 1997.Google Scholar
  4. 4.
    Cox, D., Little, J., O’Shea, D,: Using algebraic geometry, Springer Verlag, New York 1998.zbMATHGoogle Scholar
  5. 5.
    Cox, D., Goldman, R., Zhang, M.: On the validity of implicitization by moving quadrics for rational surfaces with no base points, J. Symbolic Computation, 11,(1999)Google Scholar
  6. 6.
    Dokken, T.: Approximate Implicitization, in: Lyche, T., Schumaker, L. (eds.), Mathematical methods in CAGD, Nashboro Press, 2001, 1-25.Google Scholar
  7. 7.
    Dokken, T., Thomassen, J.: Overview of Approximate Implicitization, in: Topics in Algebraic Geometry and Geometric Modeling, AMS Cont. Math. 334 (2003), 169-184.MathSciNetGoogle Scholar
  8. 8.
    Dokken, T., Thomassen, J.: Weak approximate implicitization, preprint, 2005.Google Scholar
  9. 9.
    Elkadi, M., Mourrain B.: Residue and Implicitization Problem for Rational Surfaces, Applicable Algebra in Engineering, Communication and Computing, (2004),361-379.Google Scholar
  10. 10.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, Academic Press, 2002.Google Scholar
  11. 11.
  12. 12.
    Hoffmann, C.: Implicit Curves and Surfaces in CAGD, Comp. Graphics and Applics. 13:79-88, (1993)CrossRefGoogle Scholar
  13. 13.
    Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces, Advances in Computational Mathematics 17:135-152, (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jüttler, B., Wurm, E.: Approximate implicitization via curve fitting, in L. Kobbelt, P. Schröder, H. Hoppe (eds.), Symposium on Geometry Processing, Eurographics / ACM Siggraph, New York 2003, 240-247.Google Scholar
  15. 15.
    Lee, K.W.: Principles of CAD/CAM/CAE Systems, Prentice Hall, 1999.Google Scholar
  16. 16.
    Thomassen, J., Self-intersection problems and approximate implicitization, in: Dokken, T., Jüttler, B. (eds.), Computational Methods for Algebraic Spline Surfaces, Springer, Berlin 2005, 155-170.CrossRefGoogle Scholar
  17. 17.
    Sederberg, T., Chen F.: Implicitization using moving curves and surfaces. Siggraph 1995, 29:301-308, (1995)Google Scholar
  18. 18.
    Šır, Z.: Fitting of Piecewise Polynomial Implicit Surfaces, Proc. of the 24rd Conference on Geometry and Computer Graphics, University of Ostrava 2004, 202-206.Google Scholar
  19. 19.
    Gonzalez-Vega, L.: Implicitization of parametric curves and surfaces by using multidimensional Newton formulae. J. Symb. Comput. 23(2-3), 137-151 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wurm, E., Thomassen, J., Jüttler, B., Dokken, T.: Comparative Benchmark-ing of Methods for Approximate Implicitization, in: Neamtu, M., and Lucian, M. (eds.), Geometric Modeling and Computing: Seattle 2003, Nashboro Press, Brentwood 2004, 537-548.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mohamed F. Shalaby
    • 1
  • Jan B. Thomassen
    • 2
  • Elmar M. Wurm
    • 3
  • Tor Dokken
    • 4
  • Bert Jüttler
    • 5
  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  2. 2.Center of Mathematics for ApplicationsOsloNorway
  3. 3.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  4. 4.SINTEF ICTOsloNorway
  5. 5.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria

Personalised recommendations