Application of Non-Convex BV Regularization for Image Segmentation

  • Klaus Frick
  • Otmar Scherzer
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000.Google Scholar
  2. 2.
    G. Bouchitté, I. Fonseca, and L. Mascarenhas. A global method for relaxation. Arch. Rational Mech. Anal., 145(1):51–98, 1998.CrossRefMathSciNetGoogle Scholar
  3. 3.
    G. Buttazzo and G. Dal Maso. Γ -limits of integral functionals. J. Analyse Math., 37:145–185, 1980.CrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Buttazzo. Semicontinuity, relaxation and integral representation in the calculus of variation. Pitman Research Notes in Mathematics. Longman Scientific & Technical, Harlow U.K., 1989.Google Scholar
  5. 5.
    V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model for active contours in image processing. Numer. Math., 66(1):1–31, 1992.CrossRefGoogle Scholar
  6. 6.
    V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. Int. J. Comput. Vis., 22(1):61–79, 1997.CrossRefGoogle Scholar
  7. 7.
    V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Minimal surfaces: A geometric three dimensional segmentation approach. Numer. Math., 77(4):423–451, 1997.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Y.-G. Chen, Y. Giga, and S. Goto. Uniqueness and existence of viscosity solu-tions of gerealized mean curvature flow equations. J. Differ. Geom., 33(3):749-786,1991.MathSciNetGoogle Scholar
  9. 9.
    M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27 (1):1–67, 1992.CrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Dacorogna. Direct methods in the calculus of variations. Springer-Verlag, Berlin, 1989.Google Scholar
  11. 11.
    L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.Google Scholar
  12. 12.
    L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I. J. Differential Geom., 3(3):635–681, 1991.MathSciNetGoogle Scholar
  13. 13.
    M. Fuchs. Non-convex scale spaces. Diploma thesis, University of Innsbruck, 2005.Google Scholar
  14. 14.
    M. Grasmair, F. Lenzen, A. Obereder, O. Scherzer, and M. Fuchs. A non-convex pde scale space. In R. Kimmel, N. Sochen, and J. Weickert, editors, Scale Space and PDE Methods in Computer Vision, volume 3459 of Lecture Notes in Computer Science, pages 303–315, Berlin, 2005. Springer-Verlag.Google Scholar
  15. 15.
    M. Grasmair and O. Scherzer. Relaxation of nonlocal singular integrals. Numer. Funct. Anal. Optim., 26(4-5):481–506, 2005.CrossRefMathSciNetGoogle Scholar
  16. 16.
    F. Guichard and J.-M. Morel. Image Analysis and P.D.E.’s. 2000.Google Scholar
  17. 17.
    G. Kühne and J. Weickert. Fast methods for implicit active contour models. Geometric level set methods in imaging, vision, and graphics, pages 43-57, 2003.Google Scholar
  18. 18.
    T. Lü, P. Neittaanmäki, and X.-C. Tai. A parallel splitting up method and its application to navier-stokes equations. Appl. Math. Lett., 4(2):25–29, 1991.CrossRefMathSciNetGoogle Scholar
  19. 19.
    T. Lü, P. Neittaanmäki, and X.-C. Tai. A parallel splitting-up method for partial differential equations and its applications to navier-stokes equations. RAIRO Modél. Math. Anal. Numér., 26(6):673–708, 1992.Google Scholar
  20. 20.
    S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys., 79(1):12–49,1988.CrossRefMathSciNetGoogle Scholar
  21. 21.
    E. Radmoser, O. Scherzer, and J. Weickert. Scale-space properties of non-stationary iterative regularization methods. J. Vis. Comm.Image Represent., 11:96–114, 2000.CrossRefGoogle Scholar
  22. 22.
    W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.Google Scholar
  23. 23.
    O. Scherzer. Explicit versus implicit relative error regularization on the space of functions of bounded variation. Inverse problems, image analysis, and medical imaging, 313:171–198, 2002.Google Scholar
  24. 24.
    O. Scherzer and J. Weickert. Relations between regularization and diffusion filtering. J. Math. Imaging Vis., 12(1):43–63, 2000.CrossRefMathSciNetGoogle Scholar
  25. 25.
    R. Temam. Problèmes mathématique en plasticité. Méthodes mathématiques de l’informatique. Gauthier-Villars, Montrouge, 1983.Google Scholar
  26. 26.
    J. Weickert. Anisotropic Diffusion in Image Processing. ECMI. B.G. Teubner, Stuttgart, 1998.Google Scholar
  27. 27.
    J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3):398–410, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Klaus Frick
    • 1
  • Otmar Scherzer
    • 2
  1. 1.Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations