ANNEX Model: Artificial Neural Networks with External Drift Environmental Data Mapping

  • R. Parkin
  • M. Kanevski


Hide Layer Spatial Prediction Real Case Study Geostatistical Model Spatial Correlation Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop CM (1995) Neural Networks for Pattern Recognition, Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Deutsch CV, Journel AG (1998) GSLIB Geostatistical Software Library and User’s Guide, Oxford University Press, New York, OxfordGoogle Scholar
  3. 3.
    Haykin S (1999) Neural Networks, A Comprehensive Foundation, Second Edition, Prentice Hall International, Inc., Prentice HallGoogle Scholar
  4. 4.
    Kanevski M, Arutyunyan R, Bolshov L, Demyanov V, Maignan M (1996) Artificial neural networks and spatial estimations of Chernobyl fallout. Geoinformatics, vol. 7, pp. 5–11Google Scholar
  5. 5.
    Kanevski M, Demyanov V, Chernov S, Savelieva E, Serov A, Timonin V (1999) Geostat Office for Environmental and Pollution Spatial Data Analysis. Mathematische Geologie band 3 April 73–83, CPress Publishing House, DresdenGoogle Scholar
  6. 6.
    Masters T (1995) Advanced Algorithms for Neural Networks. A C++ Sourcebook, John Wiley & Sons, Inc., New YorkGoogle Scholar
  7. 7.
    Wackernagel H (1995) Multivariate Geostatistics, Springler-Verlag, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. Parkin
    • 1
  • M. Kanevski
    • 2
  1. 1.Institute of Nuclear Safety (IBRAE)MoscowRussia
  2. 2.Institute of Geomatics and Analysis of RiskUniversity of LausanneSwitzerland

Personalised recommendations